#
# @BEGIN LICENSE
#
# Psi4: an open-source quantum chemistry software package
#
# Copyright (c) 2007-2019 The Psi4 Developers.
#
# The copyrights for code used from other parties are included in
# the corresponding files.
#
# This file is part of Psi4.
#
# Psi4 is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, version 3.
#
# Psi4 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with Psi4; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# @END LICENSE
#
"""Module with functions that encode the sequence of PSI module
calls for each of the *name* values of the energy(), optimize(),
response(), and frequency() function. *name* can be assumed lowercase by here.
"""
import os
import shutil
import subprocess
import numpy as np
from psi4 import extras
from psi4.driver import p4util
from psi4.driver import qcdb
from psi4.driver import psifiles as psif
from psi4.driver.p4util.exceptions import *
from psi4.driver.molutil import *
# never import driver, wrappers, or aliases into this file
from .roa import *
from . import proc_util
from . import empirical_dispersion
from . import dft
from . import mcscf
from . import response
# ATTN NEW ADDITIONS!
# consult http://psicode.org/psi4manual/master/proc_py.html
def select_mp2(name, **kwargs):
"""Function selecting the algorithm for a MP2 energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP2_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ/dfmp2/detci/fnocc
# MP2_TYPE exists largely for py-side reasoning, so must manage it
# here rather than passing to c-side unprepared for validation
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module == 'DETCI':
func = run_detci
elif module == 'FNOCC':
func = run_fnocc
elif module in ['', 'OCC']:
func = run_occ
elif mtd_type == 'DF':
if module == 'OCC':
func = run_dfocc
elif module in ['', 'DFMP2']:
func = run_dfmp2
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
elif reference == 'UHF':
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ
elif mtd_type == 'DF':
if module == 'OCC':
func = run_dfocc
elif module in ['', 'DFMP2']:
func = run_dfmp2
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
elif reference == 'ROHF':
if mtd_type == 'CONV':
if module == 'DETCI':
func = run_detci
elif module in ['', 'OCC']:
func = run_occ
elif mtd_type == 'DF':
if module == 'OCC':
func = run_dfocc
elif module in ['', 'DFMP2']:
func = run_dfmp2
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
elif reference in ['RKS', 'UKS']:
if mtd_type == 'DF':
if module in ['', 'DFMP2']:
func = run_dfmp2
if func is None:
raise ManagedMethodError(['select_mp2', name, 'MP2_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_mp2_gradient(name, **kwargs):
"""Function selecting the algorithm for a MP2 gradient call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP2_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ/dfmp2
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ_gradient
elif mtd_type == 'DF':
if module == 'OCC':
func = run_dfocc_gradient
elif module in ['', 'DFMP2']:
func = run_dfmp2_gradient
elif reference == 'UHF':
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ_gradient
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc_gradient
if func is None:
raise ManagedMethodError(['select_mp2_gradient', name, 'MP2_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_mp2_property(name, **kwargs):
"""Function selecting the algorithm for a MP2 property call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP2_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only dfmp2 for now
func = None
if reference == 'RHF':
if mtd_type == 'DF':
#if module == 'OCC':
# func = run_dfocc_property
if module in ['', 'DFMP2']:
func = run_dfmp2_property
#elif reference == 'UHF':
# if mtd_type == 'DF':
# if module in ['', 'OCC']:
# func = run_dfocc_property
if func is None:
raise ManagedMethodError(['select_mp2_property', name, 'MP2_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_omp2(name, **kwargs):
"""Function selecting the algorithm for an OMP2 energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP2_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
if func is None:
raise ManagedMethodError(['select_omp2', name, 'MP2_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_omp2_gradient(name, **kwargs):
"""Function selecting the algorithm for an OMP2 gradient call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP2_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ_gradient
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc_gradient
if func is None:
raise ManagedMethodError(['select_omp2_gradient', name, 'MP2_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_omp2_property(name, **kwargs):
"""Function selecting the algorithm for an OMP2 property call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP2_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
if mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc_property
if func is None:
raise ManagedMethodError(['select_omp2_property', name, 'MP2_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_mp3(name, **kwargs):
"""Function selecting the algorithm for a MP3 energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ/fnocc/detci
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module == 'DETCI':
func = run_detci
elif module == 'FNOCC':
func = run_fnocc
elif module in ['', 'OCC']:
func = run_occ
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
elif reference == 'UHF':
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
elif reference == 'ROHF':
if mtd_type == 'CONV':
if module == 'DETCI': # no default for this case
func = run_detci
elif module in ['']:
core.print_out("""\nThis method is available inefficiently as a """
"""byproduct of a CISD computation.\n Add "set """
"""qc_module detci" to input to access this route.\n""")
if func is None:
raise ManagedMethodError(['select_mp3', name, 'MP_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_mp3_gradient(name, **kwargs):
"""Function selecting the algorithm for a MP3 gradient call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ_gradient
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc_gradient
elif reference == 'UHF':
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ_gradient
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc_gradient
if func is None:
raise ManagedMethodError(['select_mp3_gradient', name, 'MP_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_omp3(name, **kwargs):
"""Function selecting the algorithm for an OMP3 energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
if func is None:
raise ManagedMethodError(['select_omp3', name, 'MP_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_omp3_gradient(name, **kwargs):
"""Function selecting the algorithm for an OMP3 gradient call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ_gradient
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc_gradient
if func is None:
raise ManagedMethodError(['select_omp3_gradient', name, 'MP_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_mp2p5(name, **kwargs):
"""Function selecting the algorithm for a MP2.5 energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference in ['RHF', 'UHF']:
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
if func is None:
raise ManagedMethodError(['select_mp2p5', name, 'MP_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_mp2p5_gradient(name, **kwargs):
"""Function selecting the algorithm for a MP2.5 gradient call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference in ['RHF', 'UHF']:
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ_gradient
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc_gradient
if func is None:
raise ManagedMethodError(['select_mp2p5_gradient', name, 'MP_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_omp2p5(name, **kwargs):
"""Function selecting the algorithm for an OMP2.5 energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
if func is None:
raise ManagedMethodError(['select_omp2p5', name, 'MP_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_omp2p5_gradient(name, **kwargs):
"""Function selecting the algorithm for an OMP2.5 gradient call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ_gradient
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc_gradient
if func is None:
raise ManagedMethodError(['select_omp2p5_gradient', name, 'MP_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_lccd(name, **kwargs):
"""Function selecting the algorithm for a LCCD energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('CC_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ/fnocc
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module == 'OCC':
func = run_occ
elif module in ['', 'FNOCC']:
func = run_cepa
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
elif reference == 'UHF':
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
if func is None:
raise ManagedMethodError(['select_lccd', name, 'CC_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_lccd_gradient(name, **kwargs):
"""Function selecting the algorithm for a LCCD gradient call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('CC_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference in ['RHF', 'UHF']:
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ_gradient
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc_gradient
if func is None:
raise ManagedMethodError(['select_lccd_gradient', name, 'CC_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_olccd(name, **kwargs):
"""Function selecting the algorithm for an OLCCD energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('CC_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
if func is None:
raise ManagedMethodError(['select_olccd', name, 'CC_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_olccd_gradient(name, **kwargs):
"""Function selecting the algorithm for an OLCCD gradient call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('CC_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ
func = None
if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
if mtd_type == 'CONV':
if module in ['', 'OCC']:
func = run_occ_gradient
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc_gradient
if func is None:
raise ManagedMethodError(['select_olccd_gradient', name, 'CC_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_fnoccsd(name, **kwargs):
"""Function selecting the algorithm for a FNO-CCSD energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('CC_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only fnocc
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module in ['', 'FNOCC']:
func = run_fnocc
elif mtd_type == 'DF':
if module in ['', 'FNOCC']:
func = run_fnodfcc
elif mtd_type == 'CD':
if module in ['', 'FNOCC']:
func = run_fnodfcc
if func is None:
raise ManagedMethodError(['select_fnoccsd', name, 'CC_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_ccsd(name, **kwargs):
"""Function selecting the algorithm for a CCSD energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('CC_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ/ccenergy/detci/fnocc
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module == 'FNOCC':
func = run_fnocc
elif module in ['', 'CCENERGY']:
func = run_ccenergy
elif mtd_type == 'DF':
if module == 'OCC':
func = run_dfocc
elif module in ['', 'FNOCC']:
func = run_fnodfcc
elif mtd_type == 'CD':
if module == 'OCC':
func = run_dfocc
elif module in ['', 'FNOCC']:
func = run_fnodfcc
elif reference == 'UHF':
if mtd_type == 'CONV':
if module in ['', 'CCENERGY']:
func = run_ccenergy
elif reference == 'ROHF':
if mtd_type == 'CONV':
if module in ['', 'CCENERGY']:
func = run_ccenergy
if func is None:
raise ManagedMethodError(['select_ccsd', name, 'CC_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_ccsd_gradient(name, **kwargs):
"""Function selecting the algorithm for a CCSD gradient call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('CC_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ/ccenergy
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module in ['', 'CCENERGY']:
func = run_ccenergy_gradient
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc_gradient
elif reference == 'UHF':
if mtd_type == 'CONV':
if module in ['', 'CCENERGY']:
func = run_ccenergy_gradient
elif reference == 'ROHF':
if mtd_type == 'CONV':
if module in ['', 'CCENERGY']:
func = run_ccenergy_gradient
if func is None:
raise ManagedMethodError(['select_ccsd_gradient', name, 'CC_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_fnoccsd_t_(name, **kwargs):
"""Function selecting the algorithm for a FNO-CCSD(T) energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('CC_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only fnocc
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module in ['', 'FNOCC']:
func = run_fnocc
elif mtd_type == 'DF':
if module in ['', 'FNOCC']:
func = run_fnodfcc
elif mtd_type == 'CD':
if module in ['', 'FNOCC']:
func = run_fnodfcc
if func is None:
raise ManagedMethodError(['select_fnoccsd_t_', name, 'CC_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_ccsd_t_(name, **kwargs):
"""Function selecting the algorithm for a CCSD(T) energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('CC_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ/ccenergy/fnocc
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module == 'FNOCC':
func = run_fnocc
elif module in ['', 'CCENERGY']:
func = run_ccenergy
elif mtd_type == 'DF':
if module == 'OCC':
func = run_dfocc
elif module in ['', 'FNOCC']:
func = run_fnodfcc
elif mtd_type == 'CD':
if module == 'OCC':
func = run_dfocc
elif module in ['', 'FNOCC']:
func = run_fnodfcc
elif reference in ['UHF', 'ROHF']:
if mtd_type == 'CONV':
if module in ['', 'CCENERGY']:
func = run_ccenergy
if func is None:
raise ManagedMethodError(['select_ccsd_t_', name, 'CC_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_ccsd_t__gradient(name, **kwargs):
"""Function selecting the algorithm for a CCSD(T) gradient call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('CC_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only ccenergy
func = None
if reference in ['RHF']:
if mtd_type == 'CONV':
if module in ['', 'CCENERGY']:
func = run_ccenergy_gradient
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc_gradient
elif reference == 'UHF':
if mtd_type == 'CONV':
if module in ['', 'CCENERGY']:
func = run_ccenergy_gradient
if func is None:
raise ManagedMethodError(['select_ccsd_t__gradient', name, 'CC_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_ccsd_at_(name, **kwargs):
"""Function selecting the algorithm for a CCSD(AT) energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('CC_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only [df]occ/ccenergy
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module in ['', 'CCENERGY']:
func = run_ccenergy
elif mtd_type == 'DF':
if module in ['', 'OCC']:
func = run_dfocc
elif mtd_type == 'CD':
if module in ['', 'OCC']:
func = run_dfocc
if func is None:
raise ManagedMethodError(['select_ccsd_at_', name, 'CC_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_cisd(name, **kwargs):
"""Function selecting the algorithm for a CISD energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('CI_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only detci/fnocc
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module == 'DETCI':
func = run_detci
elif module in ['', 'FNOCC']:
func = run_cepa
elif reference == 'ROHF':
if mtd_type == 'CONV':
if module in ['', 'DETCI']:
func = run_detci
if func is None:
raise ManagedMethodError(['select_cisd', name, 'CI_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
def select_mp4(name, **kwargs):
"""Function selecting the algorithm for a MP4 energy call
and directing to specified or best-performance default modules.
"""
reference = core.get_option('SCF', 'REFERENCE')
mtd_type = core.get_global_option('MP_TYPE')
module = core.get_global_option('QC_MODULE')
# Considering only detci/fnocc
func = None
if reference == 'RHF':
if mtd_type == 'CONV':
if module == 'DETCI':
func = run_detci
elif module in ['', 'FNOCC']:
func = run_fnocc
elif reference == 'ROHF':
if mtd_type == 'CONV':
if module == 'DETCI': # no default for this case
func = run_detci
elif module in ['']:
core.print_out("""\nThis method is available inefficiently as a """
"""byproduct of a CISDT computation.\n Add "set """
"""qc_module detci" to input to access this route.\n""")
if func is None:
raise ManagedMethodError(['select_mp4', name, 'MP_TYPE', mtd_type, reference, module])
if kwargs.pop('probe', False):
return
else:
return func(name, **kwargs)
[docs]def scf_wavefunction_factory(name, ref_wfn, reference, **kwargs):
"""Builds the correct (R/U/RO/CU HF/KS) wavefunction from the
provided information, sets relevant auxiliary basis sets on it,
and prepares any empirical dispersion.
"""
if core.has_option_changed("SCF", "DFT_DISPERSION_PARAMETERS"):
modified_disp_params = core.get_option("SCF", "DFT_DISPERSION_PARAMETERS")
else:
modified_disp_params = None
# Figure out functional
superfunc, disp_type = dft.build_superfunctional(name, (reference in ["RKS", "RHF"]))
# Build the wavefunction
core.prepare_options_for_module("SCF")
if reference in ["RHF", "RKS"]:
wfn = core.RHF(ref_wfn, superfunc)
elif reference == "ROHF":
wfn = core.ROHF(ref_wfn, superfunc)
elif reference in ["UHF", "UKS"]:
wfn = core.UHF(ref_wfn, superfunc)
elif reference == "CUHF":
wfn = core.CUHF(ref_wfn, superfunc)
else:
raise ValidationError("SCF: Unknown reference (%s) when building the Wavefunction." % reference)
if disp_type:
if isinstance(name, dict):
# user dft_functional={} spec - type for lookup, dict val for param defs,
# name & citation discarded so only param matches to existing defs will print labels
wfn._disp_functor = empirical_dispersion.EmpiricalDispersion(
name_hint='',
level_hint=disp_type["type"],
param_tweaks=disp_type["params"],
engine=kwargs.get('engine', None))
else:
# dft/*functionals.py spec - name & type for lookup, option val for param tweaks
wfn._disp_functor = empirical_dispersion.EmpiricalDispersion(
name_hint=superfunc.name(),
level_hint=disp_type["type"],
param_tweaks=modified_disp_params,
engine=kwargs.get('engine', None))
# [Aug 2018] there once was a breed of `disp_type` that quacked
# like a list rather than the more common dict handled above. if
# ever again sighted, make an issue so this code can accommodate.
wfn._disp_functor.print_out()
if disp_type["type"] == 'nl':
del wfn._disp_functor
# Set the DF basis sets
if (("DF" in core.get_global_option("SCF_TYPE")) or
(core.get_option("SCF", "DF_SCF_GUESS") and (core.get_global_option("SCF_TYPE") == "DIRECT"))):
aux_basis = core.BasisSet.build(wfn.molecule(), "DF_BASIS_SCF",
core.get_option("SCF", "DF_BASIS_SCF"),
"JKFIT", core.get_global_option('BASIS'),
puream=wfn.basisset().has_puream())
wfn.set_basisset("DF_BASIS_SCF", aux_basis)
else:
wfn.set_basisset("DF_BASIS_SCF", core.BasisSet.zero_ao_basis_set())
# Set the relativistic basis sets
if core.get_global_option("RELATIVISTIC") in ["X2C", "DKH"]:
decon_basis = core.BasisSet.build(wfn.molecule(), "BASIS_RELATIVISTIC",
core.get_option("SCF", "BASIS_RELATIVISTIC"),
"DECON", core.get_global_option('BASIS'),
puream=wfn.basisset().has_puream())
wfn.set_basisset("BASIS_RELATIVISTIC", decon_basis)
# Set the multitude of SAD basis sets
if (core.get_option("SCF", "GUESS") == "SAD" or core.get_option("SCF", "GUESS") == "HUCKEL"):
sad_basis_list = core.BasisSet.build(wfn.molecule(), "ORBITAL",
core.get_global_option("BASIS"),
puream=wfn.basisset().has_puream(),
return_atomlist=True)
wfn.set_sad_basissets(sad_basis_list)
if ("DF" in core.get_option("SCF", "SAD_SCF_TYPE")):
# We need to force this to spherical regardless of any user or other demands.
optstash = p4util.OptionsState(['PUREAM'])
core.set_global_option('PUREAM', True)
sad_fitting_list = core.BasisSet.build(wfn.molecule(), "DF_BASIS_SAD",
core.get_option("SCF", "DF_BASIS_SAD"),
puream=True,
return_atomlist=True)
wfn.set_sad_fitting_basissets(sad_fitting_list)
optstash.restore()
# Deal with the EXTERN issues
if hasattr(core, "EXTERN"):
wfn.set_external_potential(core.EXTERN)
return wfn
[docs]def scf_helper(name, post_scf=True, **kwargs):
"""Function serving as helper to SCF, choosing whether to cast
up or just run SCF with a standard guess. This preserves
previous SCF options set by other procedures (e.g., SAPT
output file types for SCF).
"""
if post_scf:
name = "scf"
optstash = p4util.OptionsState(
['PUREAM'],
['BASIS'],
['QMEFP'],
['DF_BASIS_SCF'],
['SCF', 'GUESS'],
['SCF', 'DF_INTS_IO'],
['SCF_TYPE'], # Hack: scope gets changed internally with the Andy trick
)
optstash2 = p4util.OptionsState(
['BASIS'],
['DF_BASIS_SCF'],
['SCF_TYPE'],
['SCF', 'DF_INTS_IO'],
)
# Grab a few kwargs
use_c1 = kwargs.get('use_c1', False)
scf_molecule = kwargs.get('molecule', core.get_active_molecule())
read_orbitals = core.get_option('SCF', 'GUESS') is "READ"
do_timer = kwargs.pop("do_timer", True)
ref_wfn = kwargs.pop('ref_wfn', None)
if ref_wfn is not None:
raise ValidationError("Cannot seed an SCF calculation with a reference wavefunction ('ref_wfn' kwarg).")
# SCF Banner data
banner = kwargs.pop('banner', None)
# Did we pass in a DFT functional?
dft_func = kwargs.pop('dft_functional', None)
if dft_func is not None:
if name.lower() != "scf":
raise ValidationError("dft_functional was supplied to SCF, but method name was not SCF ('%s')" % name)
name = dft_func
# Setup the timer
if do_timer:
core.tstart()
# Second-order SCF requires non-symmetric density matrix support
if core.get_option('SCF', 'SOSCF'):
proc_util.check_non_symmetric_jk_density("Second-order SCF")
# sort out cast_up settings. no need to stash these since only read, never reset
cast = False
if core.has_option_changed('SCF', 'BASIS_GUESS'):
cast = core.get_option('SCF', 'BASIS_GUESS')
if p4util.yes.match(str(cast)):
cast = True
elif p4util.no.match(str(cast)):
cast = False
if cast:
# A user can set "BASIS_GUESS" to True and we default to 3-21G
if cast is True:
guessbasis = '3-21G'
else:
guessbasis = cast
core.set_global_option('BASIS', guessbasis)
castdf = 'DF' in core.get_global_option('SCF_TYPE')
if core.has_option_changed('SCF', 'DF_BASIS_GUESS'):
castdf = core.get_option('SCF', 'DF_BASIS_GUESS')
if p4util.yes.match(str(castdf)):
castdf = True
elif p4util.no.match(str(castdf)):
castdf = False
if castdf:
core.set_global_option('SCF_TYPE', 'DF')
core.set_local_option('SCF', 'DF_INTS_IO', 'none')
# Figure out the fitting basis set
if castdf is True:
core.set_global_option('DF_BASIS_SCF', '')
elif isinstance(castdf, str):
core.set_global_option('DF_BASIS_SCF', castdf)
else:
raise ValidationError("Unexpected castdf option (%s)." % castdf)
# Switch to the guess namespace
namespace = core.IO.get_default_namespace()
guesspace = namespace + '.guess'
if namespace == '':
guesspace = 'guess'
core.IO.set_default_namespace(guesspace)
# Print some info about the guess
core.print_out('\n')
p4util.banner('Guess SCF, %s Basis' % (guessbasis))
core.print_out('\n')
# sort out broken_symmetry settings.
if 'brokensymmetry' in kwargs:
multp = scf_molecule.multiplicity()
if multp != 1:
raise ValidationError('Broken symmetry is only for singlets.')
if core.get_option('SCF', 'REFERENCE') not in ['UHF', 'UKS']:
raise ValidationError("""You must specify 'set reference uhf' to use broken symmetry.""")
do_broken = True
else:
do_broken = False
if cast and read_orbitals:
raise ValidationError("""Detected options to both cast and read orbitals""")
if cast and do_broken:
raise ValidationError("""Detected options to both cast and perform a broken symmetry computation""")
if (core.get_option('SCF', 'STABILITY_ANALYSIS') == 'FOLLOW') and (core.get_option('SCF', 'REFERENCE') != 'UHF'):
raise ValidationError("""Stability analysis root following is only available for UHF""")
# broken set-up
if do_broken:
raise ValidationError("""Broken symmetry computations are not currently enabled.""")
scf_molecule.set_multiplicity(3)
core.print_out('\n')
p4util.banner(' Computing high-spin triplet guess ')
core.print_out('\n')
# If GUESS is auto guess what it should be
if core.get_option('SCF', 'GUESS') == "AUTO":
if (scf_molecule.natom() > 1):
core.set_local_option('SCF', 'GUESS', 'SAD')
else:
core.set_local_option('SCF', 'GUESS', 'CORE')
if core.get_global_option('BASIS') == '':
if name in ['hf3c', 'hf-3c']:
core.set_global_option('BASIS', 'minix')
elif name in ['pbeh3c', 'pbeh-3c']:
core.set_global_option('BASIS', 'def2-msvp')
# the FIRST scf call
if cast or do_broken:
# Cast or broken are special cases
base_wfn = core.Wavefunction.build(scf_molecule, core.get_global_option('BASIS'))
core.print_out("\n ---------------------------------------------------------\n");
if banner:
core.print_out(" " + banner.center(58));
if cast:
core.print_out(" " + "SCF Castup computation".center(58));
ref_wfn = scf_wavefunction_factory(name, base_wfn, core.get_option('SCF', 'REFERENCE'), **kwargs)
core.set_legacy_wavefunction(ref_wfn)
# Compute dftd3
if hasattr(ref_wfn, "_disp_functor"):
disp_energy = ref_wfn._disp_functor.compute_energy(ref_wfn.molecule())
ref_wfn.set_variable("-D Energy", disp_energy)
ref_wfn.compute_energy()
# broken clean-up
if do_broken:
raise ValidationError("Broken Symmetry computations are temporarily disabled.")
scf_molecule.set_multiplicity(1)
core.set_local_option('SCF', 'GUESS', 'READ')
core.print_out('\n')
p4util.banner(' Computing broken symmetry solution from high-spin triplet guess ')
core.print_out('\n')
# cast clean-up
if cast:
# Move files to proper namespace
core.IO.change_file_namespace(180, guesspace, namespace)
core.IO.set_default_namespace(namespace)
optstash2.restore()
# Print the banner for the standard operation
core.print_out('\n')
p4util.banner(name.upper())
core.print_out('\n')
# the SECOND scf call
base_wfn = core.Wavefunction.build(scf_molecule, core.get_global_option('BASIS'))
if banner:
core.print_out("\n ---------------------------------------------------------\n");
core.print_out(" " + banner.center(58));
scf_wfn = scf_wavefunction_factory(name, base_wfn, core.get_option('SCF', 'REFERENCE'), **kwargs)
core.set_legacy_wavefunction(scf_wfn)
# The wfn from_file routine adds the npy suffix if needed, but we add it here so that
# we can use os.path.isfile to query whether the file exists before attempting to read
read_filename = scf_wfn.get_scratch_filename(180) + '.npy'
if (core.get_option('SCF', 'GUESS') == 'READ') and os.path.isfile(read_filename):
old_wfn = core.Wavefunction.from_file(read_filename)
Ca_occ = old_wfn.Ca_subset("SO", "OCC")
Cb_occ = old_wfn.Cb_subset("SO", "OCC")
if old_wfn.molecule().schoenflies_symbol() != scf_molecule.schoenflies_symbol():
raise ValidationError("Cannot compute projection of different symmetries.")
if old_wfn.basisset().name() == scf_wfn.basisset().name():
core.print_out(" Reading orbitals from file 180, no projection.\n\n")
scf_wfn.guess_Ca(Ca_occ)
scf_wfn.guess_Cb(Cb_occ)
else:
core.print_out(" Reading orbitals from file 180, projecting to new basis.\n\n")
core.print_out(" Computing basis projection from %s to %s\n\n" % (old_wfn.basisset().name(), scf_wfn.basisset().name()))
pCa = scf_wfn.basis_projection(Ca_occ, old_wfn.nalphapi(), old_wfn.basisset(), scf_wfn.basisset())
pCb = scf_wfn.basis_projection(Cb_occ, old_wfn.nbetapi(), old_wfn.basisset(), scf_wfn.basisset())
scf_wfn.guess_Ca(pCa)
scf_wfn.guess_Cb(pCb)
# Strip off headers to only get R, RO, U, CU
old_ref = old_wfn.name().replace("KS", "").replace("HF", "")
new_ref = scf_wfn.name().replace("KS", "").replace("HF", "")
if old_ref != new_ref:
scf_wfn.reset_occ_ = True
elif (core.get_option('SCF', 'GUESS') == 'READ') and not os.path.isfile(read_filename):
core.print_out(" Unable to find file 180, defaulting to SAD guess.\n")
core.set_local_option('SCF', 'GUESS', 'SAD')
sad_basis_list = core.BasisSet.build(scf_wfn.molecule(), "ORBITAL",
core.get_global_option("BASIS"),
puream=scf_wfn.basisset().has_puream(),
return_atomlist=True)
scf_wfn.set_sad_basissets(sad_basis_list)
if ("DF" in core.get_option("SCF", "SAD_SCF_TYPE")):
sad_fitting_list = core.BasisSet.build(scf_wfn.molecule(), "DF_BASIS_SAD",
core.get_option("SCF", "DF_BASIS_SAD"),
puream=scf_wfn.basisset().has_puream(),
return_atomlist=True)
scf_wfn.set_sad_fitting_basissets(sad_fitting_list)
if cast:
core.print_out("\n Computing basis projection from %s to %s\n\n" % (ref_wfn.basisset().name(), base_wfn.basisset().name()))
if ref_wfn.basisset().n_ecp_core() != base_wfn.basisset().n_ecp_core():
raise ValidationError("Projecting from basis ({}) with ({}) ECP electrons to basis ({}) with ({}) ECP electrons will be a disaster. Select a compatible cast-up basis with `set guess_basis YOUR_BASIS_HERE`.".format(
ref_wfn.basisset().name(), ref_wfn.basisset().n_ecp_core(), base_wfn.basisset().name(), base_wfn.basisset().n_ecp_core()))
pCa = ref_wfn.basis_projection(ref_wfn.Ca(), ref_wfn.nalphapi(), ref_wfn.basisset(), scf_wfn.basisset())
pCb = ref_wfn.basis_projection(ref_wfn.Cb(), ref_wfn.nbetapi(), ref_wfn.basisset(), scf_wfn.basisset())
scf_wfn.guess_Ca(pCa)
scf_wfn.guess_Cb(pCb)
# Print basis set info
if core.get_option("SCF", "PRINT_BASIS"):
scf_wfn.basisset().print_detail_out()
# Compute dftd3
if hasattr(scf_wfn, "_disp_functor"):
disp_energy = scf_wfn._disp_functor.compute_energy(scf_wfn.molecule())
scf_wfn.set_variable("-D Energy", disp_energy)
# PCM preparation
if core.get_option('SCF', 'PCM'):
pcmsolver_parsed_fname = core.get_local_option('PCM', 'PCMSOLVER_PARSED_FNAME')
pcm_print_level = core.get_option('SCF', "PRINT")
scf_wfn.set_PCM(core.PCM(pcmsolver_parsed_fname, pcm_print_level, scf_wfn.basisset()))
core.print_out(""" PCM does not make use of molecular symmetry: """
"""further calculations in C1 point group.\n""")
use_c1 = True
e_scf = scf_wfn.compute_energy()
for obj in [core]:
for pv in ["SCF TOTAL ENERGY", "CURRENT ENERGY", "CURRENT REFERENCE ENERGY"]:
obj.set_variable(pv, e_scf)
# We always would like to print a little property information
if kwargs.get('scf_do_properties', True):
oeprop = core.OEProp(scf_wfn)
oeprop.set_title("SCF")
# Figure our properties, if empty do dipole
props = [x.upper() for x in core.get_option("SCF", "SCF_PROPERTIES")]
if "DIPOLE" not in props:
props.append("DIPOLE")
proc_util.oeprop_validator(props)
for x in props:
oeprop.add(x)
# Compute properties
oeprop.compute()
for obj in [core]:
for xyz in 'XYZ':
obj.set_variable('CURRENT DIPOLE ' + xyz, obj.variable('SCF DIPOLE ' + xyz))
# Write out MO's
if core.get_option("SCF", "PRINT_MOS"):
mowriter = core.MOWriter(scf_wfn)
mowriter.write()
# Write out a molden file
if core.get_option("SCF", "MOLDEN_WRITE"):
filename = core.get_writer_file_prefix(scf_molecule.name()) + ".molden"
dovirt = bool(core.get_option("SCF", "MOLDEN_WITH_VIRTUAL"))
occa = scf_wfn.occupation_a()
occb = scf_wfn.occupation_a()
mw = core.MoldenWriter(scf_wfn)
mw.write(filename, scf_wfn.Ca(), scf_wfn.Cb(), scf_wfn.epsilon_a(),
scf_wfn.epsilon_b(), scf_wfn.occupation_a(),
scf_wfn.occupation_b(), dovirt)
# Write out orbitals and basis; Can be disabled, e.g., for findif displacements
if kwargs.get('write_orbitals', True):
write_filename = scf_wfn.get_scratch_filename(180)
scf_wfn.to_file(write_filename)
extras.register_numpy_file(write_filename)
if do_timer:
core.tstop()
optstash.restore()
if (not use_c1) or (scf_molecule.schoenflies_symbol() == 'c1'):
return scf_wfn
else:
# C1 copy quietly
c1_optstash = p4util.OptionsState(['PRINT'])
core.set_global_option("PRINT", 0)
# If we force c1 copy the active molecule
scf_molecule.update_geometry()
core.print_out("""\n A requested method does not make use of molecular symmetry: """
"""further calculations in C1 point group.\n\n""")
c1_molecule = scf_molecule.clone()
c1_molecule.reset_point_group('c1')
c1_molecule.fix_orientation(True)
c1_molecule.fix_com(True)
c1_molecule.update_geometry()
c1_basis = core.BasisSet.build(c1_molecule, "ORBITAL", core.get_global_option('BASIS'), quiet=True)
tmp = scf_wfn.c1_deep_copy(c1_basis)
c1_jkbasis = core.BasisSet.build(c1_molecule, "DF_BASIS_SCF",
core.get_global_option("DF_BASIS_SCF"),
"JKFIT", core.get_global_option('BASIS'), quiet=True)
tmp.set_basisset("DF_BASIS_SCF", c1_jkbasis)
c1_optstash.restore()
return tmp
def run_dcft(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a density cumulant functional theory calculation.
"""
if (core.get_global_option('FREEZE_CORE') == 'TRUE'):
raise ValidationError('Frozen core is not available for DCFT.')
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs)
if (core.get_global_option("DCFT_TYPE") == "DF"):
core.print_out(" Constructing Basis Sets for DCFT...\n\n")
aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_DCFT",
core.get_global_option("DF_BASIS_DCFT"),
"RIFIT", core.get_global_option("BASIS"))
ref_wfn.set_basisset("DF_BASIS_DCFT", aux_basis)
scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF",
core.get_option("SCF", "DF_BASIS_SCF"),
"JKFIT", core.get_global_option('BASIS'),
puream=ref_wfn.basisset().has_puream())
ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis)
dcft_wfn = core.dcft(ref_wfn)
else:
# Ensure IWL files have been written for non DF-DCFT
proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn)
dcft_wfn = core.dcft(ref_wfn)
return dcft_wfn
def run_dcft_gradient(name, **kwargs):
"""Function encoding sequence of PSI module calls for
DCFT gradient calculation.
"""
optstash = p4util.OptionsState(
['GLOBALS', 'DERTYPE'])
core.set_global_option('DERTYPE', 'FIRST')
dcft_wfn = run_dcft(name, **kwargs)
derivobj = core.Deriv(dcft_wfn)
derivobj.set_tpdm_presorted(True)
grad = derivobj.compute()
dcft_wfn.set_gradient(grad)
optstash.restore()
return dcft_wfn
def run_dfocc(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a density-fitted or Cholesky-decomposed
(non-)orbital-optimized MPN or CC computation.
"""
optstash = p4util.OptionsState(
['SCF', 'DF_INTS_IO'],
['DFOCC', 'WFN_TYPE'],
['DFOCC', 'ORB_OPT'],
['DFOCC', 'DO_SCS'],
['DFOCC', 'DO_SOS'],
['DFOCC', 'READ_SCF_3INDEX'],
['DFOCC', 'CHOLESKY'],
['DFOCC', 'CC_LAMBDA'])
def set_cholesky_from(mtd_type):
type_val = core.get_global_option(mtd_type)
if type_val in ['DISK_DF', 'DF']:
core.set_local_option('DFOCC', 'CHOLESKY', 'FALSE')
proc_util.check_disk_df(name.upper(), optstash)
elif type_val == 'CD':
core.set_local_option('DFOCC', 'CHOLESKY', 'TRUE')
# Alter default algorithm
if not core.has_global_option_changed('SCF_TYPE'):
optstash.add_option(['SCF_TYPE'])
core.set_global_option('SCF_TYPE', 'CD')
core.print_out(""" SCF Algorithm Type (re)set to CD.\n""")
if core.get_global_option('SCF_TYPE') != 'CD':
core.set_local_option('DFOCC', 'READ_SCF_3INDEX', 'FALSE')
else:
raise ValidationError("""Invalid type '%s' for DFOCC""" % type_val)
return type_val
if name in ['mp2', 'omp2']:
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OMP2')
type_val = set_cholesky_from('MP2_TYPE')
elif name in ['mp2.5', 'omp2.5']:
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OMP2.5')
type_val = set_cholesky_from('MP_TYPE')
elif name in ['mp3', 'omp3']:
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OMP3')
type_val = set_cholesky_from('MP_TYPE')
elif name in ['lccd', 'olccd']:
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OLCCD')
type_val = set_cholesky_from('CC_TYPE')
elif name == 'ccd':
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-CCD')
type_val = set_cholesky_from('CC_TYPE')
elif name == 'ccsd':
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-CCSD')
type_val = set_cholesky_from('CC_TYPE')
elif name == 'ccsd(t)':
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-CCSD(T)')
type_val = set_cholesky_from('CC_TYPE')
elif name == 'ccsd(at)':
core.set_local_option('DFOCC', 'CC_LAMBDA', 'TRUE')
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-CCSD(AT)')
type_val = set_cholesky_from('CC_TYPE')
elif name == 'dfocc':
pass
else:
raise ValidationError('Unidentified method %s' % (name))
# conventional vs. optimized orbitals
if name in ['mp2', 'mp2.5', 'mp3', 'lccd',
'ccd', 'ccsd', 'ccsd(t)', 'ccsd(at)']:
core.set_local_option('DFOCC', 'ORB_OPT', 'FALSE')
elif name in ['omp2', 'omp2.5', 'omp3', 'olccd']:
core.set_local_option('DFOCC', 'ORB_OPT', 'TRUE')
core.set_local_option('DFOCC', 'DO_SCS', 'FALSE')
core.set_local_option('DFOCC', 'DO_SOS', 'FALSE')
core.set_local_option('SCF', 'DF_INTS_IO', 'SAVE')
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, use_c1=True, **kwargs) # C1 certified
else:
if ref_wfn.molecule().schoenflies_symbol() != 'c1':
raise ValidationError(""" DFOCC does not make use of molecular symmetry: """
"""reference wavefunction must be C1.\n""")
if not core.get_local_option("DFOCC", "CHOLESKY"):
core.print_out(" Constructing Basis Sets for DFOCC...\n\n")
scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF",
core.get_option("SCF", "DF_BASIS_SCF"),
"JKFIT", core.get_global_option('BASIS'),
puream=ref_wfn.basisset().has_puream())
ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis)
aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_CC",
core.get_global_option("DF_BASIS_CC"),
"RIFIT", core.get_global_option("BASIS"))
ref_wfn.set_basisset("DF_BASIS_CC", aux_basis)
if core.get_option('SCF', 'REFERENCE') == 'ROHF':
ref_wfn.semicanonicalize()
dfocc_wfn = core.dfocc(ref_wfn)
optstash.restore()
return dfocc_wfn
def run_dfocc_gradient(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a density-fitted (non-)orbital-optimized MPN or CC computation.
"""
optstash = p4util.OptionsState(
['SCF', 'DF_INTS_IO'],
['REFERENCE'],
['DFOCC', 'WFN_TYPE'],
['DFOCC', 'ORB_OPT'],
['DFOCC', 'CC_LAMBDA'],
['GLOBALS', 'DERTYPE'])
proc_util.check_disk_df(name.upper(), optstash)
if name in ['mp2', 'omp2']:
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OMP2')
elif name in ['mp2.5', 'omp2.5']:
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OMP2.5')
elif name in ['mp3', 'omp3']:
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OMP3')
elif name in ['lccd', 'olccd']:
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OLCCD')
elif name in ['ccd']:
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-CCD')
core.set_local_option('DFOCC', 'CC_LAMBDA', 'TRUE')
elif name in ['ccsd']:
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-CCSD')
core.set_local_option('DFOCC', 'CC_LAMBDA', 'TRUE')
elif name in ['ccsd(t)']:
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-CCSD(T)')
core.set_local_option('DFOCC', 'CC_LAMBDA', 'TRUE')
else:
raise ValidationError('Unidentified method %s' % (name))
if name in ['mp2', 'mp2.5', 'mp3', 'lccd', 'ccd', 'ccsd', 'ccsd(t)']:
core.set_local_option('DFOCC', 'ORB_OPT', 'FALSE')
elif name in ['omp2', 'omp2.5', 'omp3', 'olccd']:
core.set_local_option('DFOCC', 'ORB_OPT', 'TRUE')
core.set_global_option('DERTYPE', 'FIRST')
core.set_local_option('DFOCC', 'DO_SCS', 'FALSE')
core.set_local_option('DFOCC', 'DO_SOS', 'FALSE')
core.set_local_option('SCF', 'DF_INTS_IO', 'SAVE')
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, use_c1=True, **kwargs) # C1 certified
else:
if ref_wfn.molecule().schoenflies_symbol() != 'c1':
raise ValidationError(""" DFOCC does not make use of molecular symmetry: """
"""reference wavefunction must be C1.\n""")
core.print_out(" Constructing Basis Sets for DFOCC...\n\n")
scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF",
core.get_option("SCF", "DF_BASIS_SCF"),
"JKFIT", core.get_global_option('BASIS'),
puream=ref_wfn.basisset().has_puream())
ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis)
aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_CC",
core.get_global_option("DF_BASIS_CC"),
"RIFIT", core.get_global_option("BASIS"))
ref_wfn.set_basisset("DF_BASIS_CC", aux_basis)
if core.get_option('SCF', 'REFERENCE') == 'ROHF':
ref_wfn.semicanonicalize()
dfocc_wfn = core.dfocc(ref_wfn)
optstash.restore()
return dfocc_wfn
def run_dfocc_property(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a density-fitted (non-)orbital-optimized MPN or CC computation.
"""
optstash = p4util.OptionsState(
['SCF', 'DF_INTS_IO'],
['DFOCC', 'WFN_TYPE'],
['DFOCC', 'ORB_OPT'],
['DFOCC', 'OEPROP'])
if name in ['mp2', 'omp2']:
core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OMP2')
else:
raise ValidationError('Unidentified method ' % (name))
proc_util.check_disk_df(name.upper(), optstash)
if name in ['mp2']:
core.set_local_option('DFOCC', 'ORB_OPT', 'FALSE')
elif name in ['omp2']:
core.set_local_option('DFOCC', 'ORB_OPT', 'TRUE')
core.set_local_option('DFOCC', 'OEPROP', 'TRUE')
core.set_local_option('DFOCC', 'DO_SCS', 'FALSE')
core.set_local_option('DFOCC', 'DO_SOS', 'FALSE')
core.set_local_option('SCF', 'DF_INTS_IO', 'SAVE')
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, use_c1=True, **kwargs) # C1 certified
else:
if ref_wfn.molecule().schoenflies_symbol() != 'c1':
raise ValidationError(""" DFOCC does not make use of molecular symmetry: """
"""reference wavefunction must be C1.\n""")
core.print_out(" Constructing Basis Sets for DFOCC...\n\n")
scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF",
core.get_option("SCF", "DF_BASIS_SCF"),
"JKFIT", core.get_global_option('BASIS'),
puream=ref_wfn.basisset().has_puream())
ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis)
aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_CC",
core.get_global_option("DF_BASIS_CC"),
"RIFIT", core.get_global_option("BASIS"))
ref_wfn.set_basisset("DF_BASIS_CC", aux_basis)
if core.get_option('SCF', 'REFERENCE') == 'ROHF':
ref_wfn.semicanonicalize()
dfocc_wfn = core.dfocc(ref_wfn)
optstash.restore()
return dfocc_wfn
def run_qchf(name, **kwargs):
"""Function encoding sequence of PSI module calls for
an density-fitted orbital-optimized MP2 computation
"""
optstash = p4util.OptionsState(
['SCF', 'DF_INTS_IO'],
['DF_BASIS_SCF'],
['DIE_IF_NOT_CONVERGED'],
['MAXITER'],
['DFOCC', 'ORB_OPT'],
['DFOCC', 'WFN_TYPE'],
['DFOCC', 'QCHF'],
['DFOCC', 'E_CONVERGENCE'])
core.set_local_option('DFOCC', 'ORB_OPT', 'TRUE')
core.set_local_option('DFOCC', 'WFN_TYPE', 'QCHF')
core.set_local_option('DFOCC', 'QCHF', 'TRUE')
core.set_local_option('DFOCC', 'E_CONVERGENCE', 8)
core.set_local_option('SCF', 'DF_INTS_IO', 'SAVE')
core.set_local_option('SCF', 'DIE_IF_NOT_CONVERGED', 'FALSE')
core.set_local_option('SCF', 'MAXITER', 1)
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, use_c1=True, **kwargs) # C1 certified
else:
if ref_wfn.molecule().schoenflies_symbol() != 'c1':
raise ValidationError(""" QCHF does not make use of molecular symmetry: """
"""reference wavefunction must be C1.\n""")
if core.get_option('SCF', 'REFERENCE') == 'ROHF':
ref_wfn.semicanonicalize()
dfocc_wfn = core.dfocc(ref_wfn)
return dfocc_wfn
def run_occ(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a conventional integral (O)MPN computation
"""
optstash = p4util.OptionsState(
['OCC', 'SCS_TYPE'],
['OCC', 'DO_SCS'],
['OCC', 'SOS_TYPE'],
['OCC', 'DO_SOS'],
['OCC', 'ORB_OPT'],
['OCC', 'WFN_TYPE'])
if name == 'mp2':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2')
core.set_local_option('OCC', 'ORB_OPT', 'FALSE')
core.set_local_option('OCC', 'DO_SCS', 'FALSE')
core.set_local_option('OCC', 'DO_SOS', 'FALSE')
elif name == 'omp2':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SCS', 'FALSE')
core.set_local_option('OCC', 'DO_SOS', 'FALSE')
elif name == 'scs-omp2':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SCS', 'TRUE')
core.set_local_option('OCC', 'SCS_TYPE', 'SCS')
elif name == 'scs(n)-omp2':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SCS', 'TRUE')
core.set_local_option('OCC', 'SCS_TYPE', 'SCSN')
elif name == 'scs-omp2-vdw':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SCS', 'TRUE')
core.set_local_option('OCC', 'SCS_TYPE', 'SCSVDW')
elif name == 'sos-omp2':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SOS', 'TRUE')
core.set_local_option('OCC', 'SOS_TYPE', 'SOS')
elif name == 'sos-pi-omp2':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SOS', 'TRUE')
core.set_local_option('OCC', 'SOS_TYPE', 'SOSPI')
elif name == 'mp2.5':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2.5')
core.set_local_option('OCC', 'ORB_OPT', 'FALSE')
core.set_local_option('OCC', 'DO_SCS', 'FALSE')
core.set_local_option('OCC', 'DO_SOS', 'FALSE')
elif name == 'omp2.5':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2.5')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SCS', 'FALSE')
core.set_local_option('OCC', 'DO_SOS', 'FALSE')
elif name == 'mp3':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP3')
core.set_local_option('OCC', 'ORB_OPT', 'FALSE')
core.set_local_option('OCC', 'DO_SCS', 'FALSE')
core.set_local_option('OCC', 'DO_SOS', 'FALSE')
elif name == 'omp3':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP3')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SCS', 'FALSE')
core.set_local_option('OCC', 'DO_SOS', 'FALSE')
elif name == 'scs-omp3':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP3')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SCS', 'TRUE')
core.set_local_option('OCC', 'SCS_TYPE', 'SCS')
elif name == 'scs(n)-omp3':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP3')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SCS', 'TRUE')
core.set_local_option('OCC', 'SCS_TYPE', 'SCSN')
elif name == 'scs-omp3-vdw':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP3')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SCS', 'TRUE')
core.set_local_option('OCC', 'SCS_TYPE', 'SCSVDW')
elif name == 'sos-omp3':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP3')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SOS', 'TRUE')
core.set_local_option('OCC', 'SOS_TYPE', 'SOS')
elif name == 'sos-pi-omp3':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP3')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SOS', 'TRUE')
core.set_local_option('OCC', 'SOS_TYPE', 'SOSPI')
elif name == 'lccd':
core.set_local_option('OCC', 'WFN_TYPE', 'OCEPA')
core.set_local_option('OCC', 'ORB_OPT', 'FALSE')
core.set_local_option('OCC', 'DO_SCS', 'FALSE')
core.set_local_option('OCC', 'DO_SOS', 'FALSE')
elif name == 'olccd':
core.set_local_option('OCC', 'WFN_TYPE', 'OCEPA')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
core.set_local_option('OCC', 'DO_SCS', 'FALSE')
core.set_local_option('OCC', 'DO_SOS', 'FALSE')
else:
raise ValidationError("""Invalid method %s""" % name)
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs) # C1 certified
# Ensure IWL files have been written
proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn)
if core.get_option('SCF', 'REFERENCE') == 'ROHF':
ref_wfn.semicanonicalize()
occ_wfn = core.occ(ref_wfn)
optstash.restore()
return occ_wfn
def run_occ_gradient(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a conventional integral (O)MPN computation
"""
optstash = p4util.OptionsState(
['OCC', 'ORB_OPT'],
['OCC', 'WFN_TYPE'],
['OCC', 'DO_SCS'],
['OCC', 'DO_SOS'],
['GLOBALS', 'DERTYPE'])
if name == 'mp2':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2')
core.set_local_option('OCC', 'ORB_OPT', 'FALSE')
elif name in ['omp2', 'conv-omp2']:
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
elif name == 'mp2.5':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2.5')
core.set_local_option('OCC', 'ORB_OPT', 'FALSE')
elif name == 'omp2.5':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP2.5')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
elif name == 'mp3':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP3')
core.set_local_option('OCC', 'ORB_OPT', 'FALSE')
elif name == 'omp3':
core.set_local_option('OCC', 'WFN_TYPE', 'OMP3')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
elif name == 'lccd':
core.set_local_option('OCC', 'WFN_TYPE', 'OCEPA')
core.set_local_option('OCC', 'ORB_OPT', 'FALSE')
elif name == 'olccd':
core.set_local_option('OCC', 'WFN_TYPE', 'OCEPA')
core.set_local_option('OCC', 'ORB_OPT', 'TRUE')
else:
raise ValidationError("""Invalid method %s""" % name)
core.set_global_option('DERTYPE', 'FIRST')
# locking out SCS through explicit keyword setting
# * so that current energy must match call
# * since grads not avail for scs
core.set_local_option('OCC', 'DO_SCS', 'FALSE')
core.set_local_option('OCC', 'DO_SOS', 'FALSE')
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs) # C1 certified
# Ensure IWL files have been written
proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn)
if core.get_option('SCF', 'REFERENCE') == 'ROHF':
ref_wfn.semicanonicalize()
occ_wfn = core.occ(ref_wfn)
derivobj = core.Deriv(occ_wfn)
grad = derivobj.compute()
occ_wfn.set_gradient(grad)
optstash.restore()
return occ_wfn
def run_scf(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a self-consistent-field theory (HF & DFT) calculation.
"""
optstash_mp2 = p4util.OptionsState(
['DF_BASIS_MP2'],
['DFMP2', 'MP2_OS_SCALE'],
['DFMP2', 'MP2_SS_SCALE'])
dft_func = False
if "dft_functional" in kwargs:
dft_func = True
optstash_scf = proc_util.scf_set_reference_local(name, is_dft=dft_func)
# Alter default algorithm
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DF')
scf_wfn = scf_helper(name, post_scf=False, **kwargs)
returnvalue = core.variable('CURRENT ENERGY')
ssuper = scf_wfn.functional()
if ssuper.is_c_hybrid():
core.tstart()
aux_basis = core.BasisSet.build(scf_wfn.molecule(), "DF_BASIS_MP2",
core.get_option("DFMP2", "DF_BASIS_MP2"),
"RIFIT", core.get_global_option('BASIS'),
puream=-1)
scf_wfn.set_basisset("DF_BASIS_MP2", aux_basis)
if ssuper.is_c_scs_hybrid():
core.set_local_option('DFMP2', 'MP2_OS_SCALE', ssuper.c_os_alpha())
core.set_local_option('DFMP2', 'MP2_SS_SCALE', ssuper.c_ss_alpha())
dfmp2_wfn = core.dfmp2(scf_wfn)
dfmp2_wfn.compute_energy()
vdh = core.variable('SCS-MP2 CORRELATION ENERGY')
else:
dfmp2_wfn = core.dfmp2(scf_wfn)
dfmp2_wfn.compute_energy()
vdh = ssuper.c_alpha() * core.variable('MP2 CORRELATION ENERGY')
# TODO: delete these variables, since they don't mean what they look to mean?
# 'MP2 TOTAL ENERGY',
# 'MP2 CORRELATION ENERGY',
# 'MP2 SAME-SPIN CORRELATION ENERGY']
core.set_variable('DOUBLE-HYBRID CORRECTION ENERGY', vdh)
returnvalue += vdh
core.set_variable('DFT TOTAL ENERGY', returnvalue)
core.set_variable('CURRENT ENERGY', returnvalue)
core.print_out('\n\n')
core.print_out(' %s Energy Summary\n' % (name.upper()))
core.print_out(' ' + '-' * (15 + len(name)) + '\n')
core.print_out(' DFT Reference Energy = %22.16lf\n' % (returnvalue - vdh))
core.print_out(' Scaled MP2 Correlation = %22.16lf\n' % (vdh))
core.print_out(' @Final double-hybrid DFT total energy = %22.16lf\n\n' % (returnvalue))
core.tstop()
optstash_scf.restore()
optstash_mp2.restore()
return scf_wfn
def run_scf_gradient(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a SCF gradient calculation.
"""
dft_func = False
if "dft_functional" in kwargs:
dft_func = True
optstash = proc_util.scf_set_reference_local(name, is_dft=dft_func)
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = run_scf(name, **kwargs)
if core.get_option('SCF', 'REFERENCE') in ['ROHF', 'CUHF']:
ref_wfn.semicanonicalize()
if hasattr(ref_wfn, "_disp_functor"):
disp_grad = ref_wfn._disp_functor.compute_gradient(ref_wfn.molecule())
ref_wfn.set_variable("-D Gradient", disp_grad)
grad = core.scfgrad(ref_wfn)
if ref_wfn.basisset().has_ECP():
core.print_out("\n\n ==> Adding ECP gradient terms (computed numerically) <==\n")
# Build a map of atom->ECP number
old_print = ref_wfn.get_print()
ref_wfn.set_print(0)
delta = 0.0001
natom = ref_wfn.molecule().natom()
mints = core.MintsHelper(ref_wfn)
ecpgradmat = core.Matrix("ECP Gradient", natom, 3)
ecpgradmat.zero()
ecpgrad = np.asarray(ecpgradmat)
Dmat = ref_wfn.Da_subset("AO")
Dmat.add(ref_wfn.Db_subset("AO"))
def displaced_energy(atom, displacement):
mints.basisset().move_atom(atom, displacement)
E = Dmat.vector_dot(mints.ao_ecp())
mints.basisset().move_atom(atom, -1*displacement)
return E
for atom in range(natom):
for xyz in range(3):
transvec = core.Vector3(0.0)
transvec[xyz] += delta
# +1 displacement
Ep1 = displaced_energy(atom, 1*transvec)
# -1 displacement
Em1 = displaced_energy(atom, -1*transvec)
# +2 displacement
Ep2 = displaced_energy(atom, 2*transvec)
# -2 displacement
Em2 = displaced_energy(atom, -2*transvec)
# Evaluate
ecpgrad[atom, xyz] = (Em2 + 8*Ep1 - 8*Em1 - Ep2) / (12*delta)
ecpgradmat.symmetrize_gradient(ref_wfn.molecule())
ecpgradmat.print_atom_vector()
grad.add(ecpgradmat)
grad.print_atom_vector()
ref_wfn.set_print(old_print)
ref_wfn.set_gradient(grad)
optstash.restore()
return ref_wfn
def run_scf_hessian(name, **kwargs):
"""Function encoding sequence of PSI module calls for
an SCF hessian calculation.
"""
optstash = proc_util.scf_set_reference_local(name)
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = run_scf(name, **kwargs)
badref = core.get_option('SCF', 'REFERENCE') in ['UHF', 'ROHF', 'CUHF', 'RKS', 'UKS']
badint = core.get_global_option('SCF_TYPE') in [ 'CD', 'OUT_OF_CORE']
if badref or badint:
raise ValidationError("Only RHF Hessians are currently implemented. SCF_TYPE either CD or OUT_OF_CORE not supported")
if hasattr(ref_wfn, "_disp_functor"):
disp_hess = ref_wfn._disp_functor.compute_hessian(ref_wfn.molecule())
ref_wfn.set_variable("-D Hessian", disp_hess)
H = core.scfhess(ref_wfn)
ref_wfn.set_hessian(H)
optstash.restore()
return ref_wfn
def run_mcscf(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a multiconfigurational self-consistent-field calculation.
"""
# Make sure the molecule the user provided is the active one
mcscf_molecule = kwargs.get('molecule', core.get_active_molecule())
mcscf_molecule.update_geometry()
if 'ref_wfn' in kwargs:
raise ValidationError("It is not possible to pass run_mcscf a reference wavefunction")
new_wfn = core.Wavefunction.build(mcscf_molecule, core.get_global_option('BASIS'))
return core.mcscf(new_wfn)
def run_dfmp2_gradient(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a DFMP2 gradient calculation.
"""
optstash = p4util.OptionsState(
['DF_BASIS_SCF'],
['DF_BASIS_MP2'],
['SCF_TYPE']) # yes, this really must be global, not local to SCF
# Alter default algorithm
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DF')
core.print_out(""" SCF Algorithm Type (re)set to DF.\n""")
if "DF" not in core.get_global_option('SCF_TYPE'):
raise ValidationError('DF-MP2 gradients need DF-SCF reference.')
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs) # C1 certified
if ref_wfn.basisset().has_ECP():
raise ValidationError('DF-MP2 gradients with an ECP are not yet available. Use dertype=0 to select numerical gradients.')
core.tstart()
core.print_out('\n')
p4util.banner('DFMP2')
core.print_out('\n')
aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_MP2",
core.get_option("DFMP2", "DF_BASIS_MP2"),
"RIFIT", core.get_global_option('BASIS'))
ref_wfn.set_basisset("DF_BASIS_MP2", aux_basis)
dfmp2_wfn = core.dfmp2(ref_wfn)
grad = dfmp2_wfn.compute_gradient()
dfmp2_wfn.set_gradient(grad)
optstash.restore()
core.tstop()
return dfmp2_wfn
def run_ccenergy(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a CCSD, CC2, and CC3 calculation.
"""
optstash = p4util.OptionsState(
['TRANSQT2', 'WFN'],
['CCSORT', 'WFN'],
['CCENERGY', 'WFN'])
if name == 'ccsd':
core.set_local_option('TRANSQT2', 'WFN', 'CCSD')
core.set_local_option('CCSORT', 'WFN', 'CCSD')
core.set_local_option('CCTRANSORT', 'WFN', 'CCSD')
core.set_local_option('CCENERGY', 'WFN', 'CCSD')
elif name == 'ccsd(t)':
core.set_local_option('TRANSQT2', 'WFN', 'CCSD_T')
core.set_local_option('CCSORT', 'WFN', 'CCSD_T')
core.set_local_option('CCTRANSORT', 'WFN', 'CCSD_T')
core.set_local_option('CCENERGY', 'WFN', 'CCSD_T')
elif name == 'ccsd(at)':
core.set_local_option('TRANSQT2', 'WFN', 'CCSD_AT')
core.set_local_option('CCSORT', 'WFN', 'CCSD_AT')
core.set_local_option('CCTRANSORT', 'WFN', 'CCSD_AT')
core.set_local_option('CCENERGY', 'WFN', 'CCSD_AT')
core.set_local_option('CCHBAR', 'WFN', 'CCSD_AT')
core.set_local_option('CCLAMBDA', 'WFN', 'CCSD_AT')
elif name == 'cc2':
core.set_local_option('TRANSQT2', 'WFN', 'CC2')
core.set_local_option('CCSORT', 'WFN', 'CC2')
core.set_local_option('CCTRANSORT', 'WFN', 'CC2')
core.set_local_option('CCENERGY', 'WFN', 'CC2')
elif name == 'cc3':
core.set_local_option('TRANSQT2', 'WFN', 'CC3')
core.set_local_option('CCSORT', 'WFN', 'CC3')
core.set_local_option('CCTRANSORT', 'WFN', 'CC3')
core.set_local_option('CCENERGY', 'WFN', 'CC3')
elif name == 'eom-cc2':
core.set_local_option('TRANSQT2', 'WFN', 'EOM_CC2')
core.set_local_option('CCSORT', 'WFN', 'EOM_CC2')
core.set_local_option('CCTRANSORT', 'WFN', 'EOM_CC2')
core.set_local_option('CCENERGY', 'WFN', 'EOM_CC2')
elif name == 'eom-ccsd':
core.set_local_option('TRANSQT2', 'WFN', 'EOM_CCSD')
core.set_local_option('CCSORT', 'WFN', 'EOM_CCSD')
core.set_local_option('CCTRANSORT', 'WFN', 'EOM_CCSD')
core.set_local_option('CCENERGY', 'WFN', 'EOM_CCSD')
# Call a plain energy('ccenergy') and have full control over options, incl. wfn
elif name == 'ccenergy':
pass
# Bypass routine scf if user did something special to get it to converge
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs) # C1 certified
if core.get_global_option("CC_TYPE") == "DF":
aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_CC",
core.get_global_option("DF_BASIS_CC"),
"RIFIT", core.get_global_option("BASIS"))
ref_wfn.set_basisset("DF_BASIS_CC", aux_basis)
# Ensure IWL files have been written
proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn)
# Obtain semicanonical orbitals
if (core.get_option('SCF', 'REFERENCE') == 'ROHF') and \
((name in ['ccsd(t)', 'ccsd(at)', 'cc2', 'cc3', 'eom-cc2', 'eom-cc3']) or
core.get_option('CCTRANSORT', 'SEMICANONICAL')):
ref_wfn.semicanonicalize()
if core.get_global_option('RUN_CCTRANSORT'):
core.cctransort(ref_wfn)
else:
try:
from psi4.driver.pasture import addins
addins.ccsort_transqt2(ref_wfn)
except:
raise PastureRequiredError("RUN_CCTRANSORT")
ccwfn = core.ccenergy(ref_wfn)
if name == 'ccsd(at)':
core.cchbar(ref_wfn)
core.cclambda(ref_wfn)
optstash.restore()
return ccwfn
def run_ccenergy_gradient(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a CCSD and CCSD(T) gradient calculation.
"""
optstash = p4util.OptionsState(
['GLOBALS', 'DERTYPE'],
['CCLAMBDA', 'WFN'],
['CCDENSITY', 'WFN'])
core.set_global_option('DERTYPE', 'FIRST')
if core.get_global_option('FREEZE_CORE') == 'TRUE':
raise ValidationError('Frozen core is not available for the CC gradients.')
ccwfn = run_ccenergy(name, **kwargs)
if name == 'cc2':
core.set_local_option('CCHBAR', 'WFN', 'CC2')
core.set_local_option('CCLAMBDA', 'WFN', 'CC2')
core.set_local_option('CCDENSITY', 'WFN', 'CC2')
if name == 'ccsd':
core.set_local_option('CCLAMBDA', 'WFN', 'CCSD')
core.set_local_option('CCDENSITY', 'WFN', 'CCSD')
elif name == 'ccsd(t)':
core.set_local_option('CCLAMBDA', 'WFN', 'CCSD_T')
core.set_local_option('CCDENSITY', 'WFN', 'CCSD_T')
core.cchbar(ccwfn)
core.cclambda(ccwfn)
core.ccdensity(ccwfn)
derivobj = core.Deriv(ccwfn)
grad = derivobj.compute()
del derivobj
ccwfn.set_gradient(grad)
optstash.restore()
return ccwfn
def run_bccd(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a Brueckner CCD calculation.
"""
optstash = p4util.OptionsState(
['TRANSQT2', 'WFN'],
['CCSORT', 'WFN'],
['CCENERGY', 'WFN'])
if name == 'bccd':
core.set_local_option('TRANSQT2', 'WFN', 'BCCD')
core.set_local_option('CCSORT', 'WFN', 'BCCD')
core.set_local_option('CCTRANSORT', 'WFN', 'BCCD')
core.set_local_option('CCENERGY', 'WFN', 'BCCD')
elif name == 'bccd(t)':
core.set_local_option('TRANSQT2', 'WFN', 'BCCD_T')
core.set_local_option('CCSORT', 'WFN', 'BCCD_T')
core.set_local_option('CCENERGY', 'WFN', 'BCCD_T')
core.set_local_option('CCTRANSORT', 'WFN', 'BCCD_T')
core.set_local_option('CCTRIPLES', 'WFN', 'BCCD_T')
else:
raise ValidationError("proc.py:run_bccd name %s not recognized" % name)
# Bypass routine scf if user did something special to get it to converge
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs) # C1 certified
# Needed for (T).
if (core.get_option('SCF', 'REFERENCE') == 'ROHF'):
ref_wfn.semicanonicalize()
# Ensure IWL files have been written
proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn)
core.set_local_option('CCTRANSORT', 'DELETE_TEI', 'false')
bcc_iter_cnt = 0
if (core.get_global_option("RUN_CCTRANSORT")):
sort_func = core.cctransort
else:
try:
from psi4.driver.pasture import addins
core.set_local_option('TRANSQT2', 'DELETE_TEI', 'false')
sort_func = addins.ccsort_transqt2
except:
raise PastureRequiredError("RUN_CCTRANSORT")
while True:
sort_func(ref_wfn)
ref_wfn = core.ccenergy(ref_wfn)
core.print_out('Brueckner convergence check: %s\n' % bool(core.variable('BRUECKNER CONVERGED')))
if (core.variable('BRUECKNER CONVERGED') == True):
break
if bcc_iter_cnt >= core.get_option('CCENERGY', 'BCCD_MAXITER'):
core.print_out("\n\nWarning! BCCD did not converge within the maximum number of iterations.")
core.print_out("You can increase the number of BCCD iterations by changing BCCD_MAXITER.\n\n")
break
bcc_iter_cnt += 1
if name == 'bccd(t)':
core.cctriples(ref_wfn)
optstash.restore()
return ref_wfn
def run_scf_property(name, **kwargs):
"""Function encoding sequence of PSI module calls for
SCF calculations. This is a simple alias to :py:func:`~proc.run_scf`
since SCF properties all handled through oeprop.
"""
core.tstart()
optstash = proc_util.scf_set_reference_local(name)
properties = kwargs.pop('properties')
# What response do we need?
response_list_vals = list(response.scf_response.property_dicts)
oeprop_list_vals = core.OEProp.valid_methods
oe_properties = []
linear_response = []
unknown_property = []
for prop in properties:
prop = prop.upper()
if prop in response_list_vals:
linear_response.append(prop)
elif (prop in oeprop_list_vals) or ("MULTIPOLE(" in prop):
oe_properties.append(prop)
else:
unknown_property.append(prop)
if "DIPOLE" not in oe_properties:
oe_properties.append("DIPOLE")
# Throw if we dont know what something is
if len(unknown_property):
complete_options = oeprop_list_vals + response_list_vals
alt_method_name = p4util.text.find_approximate_string_matches(unknown_property[0],
complete_options, 2)
alternatives = ""
if len(alt_method_name) > 0:
alternatives = " Did you mean? %s" % (" ".join(alt_method_name))
raise ValidationError("SCF Property: Feature '%s' is not recognized. %s" % (unknown_property[0], alternatives))
# Validate OEProp
if len(oe_properties):
proc_util.oeprop_validator(oe_properties)
if len(linear_response):
optstash_jk = p4util.OptionsState(["SAVE_JK"])
core.set_global_option("SAVE_JK", True)
# Compute the Wavefunction
scf_wfn = run_scf(name, scf_do_properties=False, do_timer=False, **kwargs)
# Run OEProp
oe = core.OEProp(scf_wfn)
oe.set_title(name.upper())
for prop in oe_properties:
oe.add(prop.upper())
oe.compute()
scf_wfn.oeprop = oe
# Always must set SCF dipole
for cart in ["X", "Y", "Z"]:
core.set_variable("SCF DIPOLE " + cart, core.variable(name + " DIPOLE " + cart))
# Run Linear Respsonse
if len(linear_response):
core.prepare_options_for_module("SCF")
ret = response.scf_response.cpscf_linear_response(scf_wfn, *linear_response,
conv_tol = core.get_global_option("SOLVER_CONVERGENCE"),
max_iter = core.get_global_option("SOLVER_MAXITER"),
print_lvl = (core.get_global_option("PRINT") + 1))
optstash_jk.restore()
core.tstop()
optstash.restore()
return scf_wfn
def run_cc_property(name, **kwargs):
"""Function encoding sequence of PSI module calls for
all CC property calculations.
"""
optstash = p4util.OptionsState(
['WFN'],
['DERTYPE'],
['ONEPDM'],
['PROPERTY'],
['CCLAMBDA', 'R_CONVERGENCE'],
['CCEOM', 'R_CONVERGENCE'],
['CCEOM', 'E_CONVERGENCE']) # yapf:disable
oneel_properties = core.OEProp.valid_methods
twoel_properties = []
response_properties = ['POLARIZABILITY', 'ROTATION', 'ROA', 'ROA_TENSOR']
excited_properties = ['OSCILLATOR_STRENGTH', 'ROTATIONAL_STRENGTH']
one = []
two = []
response = []
excited = []
invalid = []
if 'properties' in kwargs:
properties = kwargs['properties']
for prop in properties:
prop = prop.upper()
if prop in oneel_properties:
one.append(prop)
elif prop in twoel_properties:
two.append(prop)
elif prop in response_properties:
response.append(prop)
elif prop in excited_properties:
excited.append(prop)
else:
invalid.append(prop)
else:
raise ValidationError("""The "properties" keyword is required with the property() function.""")
# People are used to requesting dipole/quadrupole and getting dipole,quadrupole,mulliken_charges and NO_occupations
if ('DIPOLE' in one) or ('QUADRUPOLE' in one):
one = list(set(one + ['DIPOLE', 'QUADRUPOLE', 'MULLIKEN_CHARGES', 'NO_OCCUPATIONS']))
n_one = len(one)
n_two = len(two)
n_response = len(response)
n_excited = len(excited)
n_invalid = len(invalid)
if n_invalid > 0:
print("""The following properties are not currently supported: %s""" % invalid)
if n_excited > 0 and (name not in ['eom-ccsd', 'eom-cc2']):
raise ValidationError("""Excited state CC properties require EOM-CC2 or EOM-CCSD.""")
if (name in ['eom-ccsd', 'eom-cc2']) and n_response > 0:
raise ValidationError("""Cannot (yet) compute response properties for excited states.""")
if 'roa' in response:
# Perform distributed roa job
run_roa(name, **kwargs)
return # Don't do anything further
if (n_one > 0 or n_two > 0) and (n_response > 0):
print("""Computing both density- and response-based properties.""")
if name in ['ccsd', 'cc2', 'eom-ccsd', 'eom-cc2']:
this_name = name.upper().replace('-', '_')
core.set_global_option('WFN', this_name)
ccwfn = run_ccenergy(name, **kwargs)
core.set_global_option('WFN', this_name)
else:
raise ValidationError("""CC property name %s not recognized""" % name.upper())
# Need cchbar for everything
core.cchbar(ccwfn)
# Need ccdensity at this point only for density-based props
if n_one > 0 or n_two > 0:
if name == 'eom-ccsd':
core.set_global_option('WFN', 'EOM_CCSD')
core.set_global_option('DERTYPE', 'NONE')
core.set_global_option('ONEPDM', 'TRUE')
core.cceom(ccwfn)
elif name == 'eom-cc2':
core.set_global_option('WFN', 'EOM_CC2')
core.set_global_option('DERTYPE', 'NONE')
core.set_global_option('ONEPDM', 'TRUE')
core.cceom(ccwfn)
core.set_global_option('DERTYPE', 'NONE')
core.set_global_option('ONEPDM', 'TRUE')
core.cclambda(ccwfn)
core.ccdensity(ccwfn)
# Need ccresponse only for response-type props
if n_response > 0:
core.set_global_option('DERTYPE', 'RESPONSE')
core.cclambda(ccwfn)
for prop in response:
core.set_global_option('PROPERTY', prop)
core.ccresponse(ccwfn)
# Excited-state transition properties
if n_excited > 0:
if name == 'eom-ccsd':
core.set_global_option('WFN', 'EOM_CCSD')
elif name == 'eom-cc2':
core.set_global_option('WFN', 'EOM_CC2')
else:
raise ValidationError("""Unknown excited-state CC wave function.""")
core.set_global_option('DERTYPE', 'NONE')
core.set_global_option('ONEPDM', 'TRUE')
# Tight convergence unnecessary for transition properties
core.set_local_option('CCLAMBDA', 'R_CONVERGENCE', 1e-4)
core.set_local_option('CCEOM', 'R_CONVERGENCE', 1e-4)
core.set_local_option('CCEOM', 'E_CONVERGENCE', 1e-5)
core.cceom(ccwfn)
core.cclambda(ccwfn)
core.ccdensity(ccwfn)
if n_one > 0:
# call oe prop for GS density
oe = core.OEProp(ccwfn)
oe.set_title("CC")
for oe_name in one:
oe.add(oe_name.upper())
oe.compute()
# call oe prop for each ES density
if name.startswith('eom'):
# copy GS CC DIP/QUAD ... to CC ROOT 0 DIP/QUAD ... if we are doing multiple roots
if 'dipole' in one:
core.set_variable("CC ROOT 0 DIPOLE X", core.variable("CC DIPOLE X"))
core.set_variable("CC ROOT 0 DIPOLE Y", core.variable("CC DIPOLE Y"))
core.set_variable("CC ROOT 0 DIPOLE Z", core.variable("CC DIPOLE Z"))
if 'quadrupole' in one:
core.set_variable("CC ROOT 0 QUADRUPOLE XX", core.variable("CC QUADRUPOLE XX"))
core.set_variable("CC ROOT 0 QUADRUPOLE XY", core.variable("CC QUADRUPOLE XY"))
core.set_variable("CC ROOT 0 QUADRUPOLE XZ", core.variable("CC QUADRUPOLE XZ"))
core.set_variable("CC ROOT 0 QUADRUPOLE YY", core.variable("CC QUADRUPOLE YY"))
core.set_variable("CC ROOT 0 QUADRUPOLE YZ", core.variable("CC QUADRUPOLE YZ"))
core.set_variable("CC ROOT 0 QUADRUPOLE ZZ", core.variable("CC QUADRUPOLE ZZ"))
n_root = sum(core.get_global_option("ROOTS_PER_IRREP"))
for rn in range(n_root):
oe.set_title("CC ROOT {}".format(rn + 1))
Da = ccwfn.variable("CC ROOT {} Da".format(rn + 1))
oe.set_Da_so(Da)
if core.get_global_option("REFERENCE") == "UHF":
Db = ccwfn.variable("CC ROOT {} Db".format(rn + 1))
oe.set_Db_so(Db)
oe.compute()
core.set_global_option('WFN', 'SCF')
core.revoke_global_option_changed('WFN')
core.set_global_option('DERTYPE', 'NONE')
core.revoke_global_option_changed('DERTYPE')
optstash.restore()
return ccwfn
def run_dfmp2_property(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a DFMP2 property calculation.
"""
optstash = p4util.OptionsState(
['DF_BASIS_SCF'],
['DF_BASIS_MP2'],
['ONEPDM'],
['OPDM_RELAX'],
['SCF_TYPE'])
core.set_global_option('ONEPDM', 'TRUE')
core.set_global_option('OPDM_RELAX', 'TRUE')
# Alter default algorithm
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DF') # local set insufficient b/c SCF option read in DFMP2
core.print_out(""" SCF Algorithm Type (re)set to DF.\n""")
if not 'DF' in core.get_global_option('SCF_TYPE'):
raise ValidationError('DF-MP2 properties need DF-SCF reference.')
properties = kwargs.pop('properties')
proc_util.oeprop_validator(properties)
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, scf_do_properties=False, use_c1=True, **kwargs) # C1 certified
aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_MP2",
core.get_option("DFMP2", "DF_BASIS_MP2"),
"RIFIT", core.get_global_option('BASIS'))
ref_wfn.set_basisset("DF_BASIS_MP2", aux_basis)
core.tstart()
core.print_out('\n')
p4util.banner('DFMP2')
core.print_out('\n')
dfmp2_wfn = core.dfmp2(ref_wfn)
grad = dfmp2_wfn.compute_gradient()
if name == 'scs-mp2':
core.set_variable('CURRENT ENERGY', core.variable('SCS-MP2 TOTAL ENERGY'))
core.set_variable('CURRENT CORRELATION ENERGY', core.variable('SCS-MP2 CORRELATION ENERGY'))
elif name == 'mp2':
core.set_variable('CURRENT ENERGY', core.variable('MP2 TOTAL ENERGY'))
core.set_variable('CURRENT CORRELATION ENERGY', core.variable('MP2 CORRELATION ENERGY'))
# Run OEProp
oe = core.OEProp(dfmp2_wfn)
oe.set_title(name.upper())
for prop in properties:
oe.add(prop.upper())
oe.compute()
dfmp2_wfn.oeprop = oe
optstash.restore()
core.tstop()
return dfmp2_wfn
def run_detci_property(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a configuration interaction calculation, namely FCI,
CIn, MPn, and ZAPTn, computing properties.
"""
optstash = p4util.OptionsState(
['OPDM'],
['TDM'])
# Find valid properties
valid_transition = ['TRANSITION_DIPOLE', 'TRANSITION_QUADRUPOLE']
ci_prop = []
ci_trans = []
properties = kwargs.pop('properties')
for prop in properties:
if prop.upper() in valid_transition:
ci_trans.append(prop)
else:
ci_prop.append(prop)
proc_util.oeprop_validator(ci_prop)
core.set_global_option('OPDM', 'TRUE')
if len(ci_trans):
core.set_global_option('TDM', 'TRUE')
# Compute
if name in ['mcscf', 'rasscf', 'casscf']:
ciwfn = run_detcas(name, **kwargs)
else:
ciwfn = run_detci(name, **kwargs)
# All property names are just CI
if 'CI' in name.upper():
name = 'CI'
states = core.get_global_option('avg_states')
nroots = core.get_global_option('num_roots')
if len(states) != nroots:
states = range(nroots)
# Run OEProp
oe = core.OEProp(ciwfn)
oe.set_title(name.upper())
for prop in ci_prop:
oe.add(prop.upper())
# Compute "the" CI density
oe.compute()
ciwfn.oeprop = oe
# If we have more than one root, compute all data
if nroots > 1:
core.print_out("\n ===> %s properties for all CI roots <=== \n\n" % name.upper())
for root in states:
oe.set_title("%s ROOT %d" % (name.upper(), root))
if ciwfn.same_a_b_dens():
oe.set_Da_mo(ciwfn.get_opdm(root, root, "A", True))
else:
oe.set_Da_mo(ciwfn.get_opdm(root, root, "A", True))
oe.set_Db_mo(ciwfn.get_opdm(root, root, "B", True))
oe.compute()
# Transition density matrices
if (nroots > 1) and len(ci_trans):
oe.clear()
for tprop in ci_trans:
oe.add(tprop.upper())
core.print_out("\n ===> %s properties for all CI transition density matrices <=== \n\n" % name.upper())
for root in states[1:]:
oe.set_title("%s ROOT %d -> ROOT %d" % (name.upper(), 0, root))
if ciwfn.same_a_b_dens():
oe.set_Da_mo(ciwfn.get_opdm(0, root, "A", True))
else:
oe.set_Da_mo(ciwfn.get_opdm(0, root, "A", True))
oe.set_Db_mo(ciwfn.get_opdm(0, root, "B", True))
oe.compute()
optstash.restore()
return ciwfn
def run_eom_cc(name, **kwargs):
"""Function encoding sequence of PSI module calls for
an EOM-CC calculation, namely EOM-CC2, EOM-CCSD, and EOM-CC3.
"""
optstash = p4util.OptionsState(
['TRANSQT2', 'WFN'],
['CCSORT', 'WFN'],
['CCENERGY', 'WFN'],
['CCHBAR', 'WFN'],
['CCEOM', 'WFN'])
if name == 'eom-ccsd':
core.set_local_option('TRANSQT2', 'WFN', 'EOM_CCSD')
core.set_local_option('CCSORT', 'WFN', 'EOM_CCSD')
core.set_local_option('CCENERGY', 'WFN', 'EOM_CCSD')
core.set_local_option('CCHBAR', 'WFN', 'EOM_CCSD')
core.set_local_option('CCEOM', 'WFN', 'EOM_CCSD')
ref_wfn = run_ccenergy('ccsd', **kwargs)
elif name == 'eom-cc2':
user_ref = core.get_option('CCENERGY', 'REFERENCE')
if (user_ref != 'RHF') and (user_ref != 'UHF'):
raise ValidationError('Reference %s for EOM-CC2 is not available.' % user_ref)
core.set_local_option('TRANSQT2', 'WFN', 'EOM_CC2')
core.set_local_option('CCSORT', 'WFN', 'EOM_CC2')
core.set_local_option('CCENERGY', 'WFN', 'EOM_CC2')
core.set_local_option('CCHBAR', 'WFN', 'EOM_CC2')
core.set_local_option('CCEOM', 'WFN', 'EOM_CC2')
ref_wfn = run_ccenergy('cc2', **kwargs)
elif name == 'eom-cc3':
core.set_local_option('TRANSQT2', 'WFN', 'EOM_CC3')
core.set_local_option('CCSORT', 'WFN', 'EOM_CC3')
core.set_local_option('CCENERGY', 'WFN', 'EOM_CC3')
core.set_local_option('CCHBAR', 'WFN', 'EOM_CC3')
core.set_local_option('CCEOM', 'WFN', 'EOM_CC3')
ref_wfn = run_ccenergy('cc3', **kwargs)
core.cchbar(ref_wfn)
core.cceom(ref_wfn)
optstash.restore()
return ref_wfn
# TODO ask if all these cc modules not actually changing wfn
def run_eom_cc_gradient(name, **kwargs):
"""Function encoding sequence of PSI module calls for
an EOM-CCSD gradient calculation.
"""
optstash = p4util.OptionsState(
['CCDENSITY', 'XI'],
['CCDENSITY', 'ZETA'],
['CCLAMBDA', 'ZETA'],
['DERTYPE'],
['CCDENSITY', 'WFN'],
['CCLAMBDA', 'WFN'])
core.set_global_option('DERTYPE', 'FIRST')
if name == 'eom-ccsd':
core.set_local_option('CCLAMBDA', 'WFN', 'EOM_CCSD')
core.set_local_option('CCDENSITY', 'WFN', 'EOM_CCSD')
ref_wfn = run_eom_cc(name, **kwargs)
else:
core.print_out('DGAS: proc.py:1599 hitting an undefined sequence')
core.clean()
raise ValueError('Hit a wall in proc.py:1599')
core.set_local_option('CCLAMBDA', 'ZETA', 'FALSE')
core.set_local_option('CCDENSITY', 'ZETA', 'FALSE')
core.set_local_option('CCDENSITY', 'XI', 'TRUE')
core.cclambda(ref_wfn)
core.ccdensity(ref_wfn)
core.set_local_option('CCLAMBDA', 'ZETA', 'TRUE')
core.set_local_option('CCDENSITY', 'ZETA', 'TRUE')
core.set_local_option('CCDENSITY', 'XI', 'FALSE')
core.cclambda(ref_wfn)
core.ccdensity(ref_wfn)
derivobj = core.Deriv(ref_wfn)
grad = derivobj.compute()
ref_wfn.set_gradient(grad)
optstash.restore()
return ref_wfn
def run_adc(name, **kwargs):
"""Function encoding sequence of PSI module calls for
an algebraic diagrammatic construction calculation.
.. caution:: Get rid of active molecule lines- should be handled in energy.
"""
if core.get_option('ADC', 'REFERENCE') != 'RHF':
raise ValidationError('ADC requires reference RHF')
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs)
# Ensure IWL files have been written
proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn)
return core.adc(ref_wfn)
def run_detci(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a configuration interaction calculation, namely FCI,
CIn, MPn, and ZAPTn.
"""
optstash = p4util.OptionsState(
['DETCI', 'WFN'],
['DETCI', 'MAX_NUM_VECS'],
['DETCI', 'MPN_ORDER_SAVE'],
['DETCI', 'MPN'],
['DETCI', 'FCI'],
['DETCI', 'EX_LEVEL'])
if core.get_option('DETCI', 'REFERENCE') not in ['RHF', 'ROHF']:
raise ValidationError('Reference %s for DETCI is not available.' %
core.get_option('DETCI', 'REFERENCE'))
if name == 'zapt':
core.set_local_option('DETCI', 'WFN', 'ZAPTN')
level = kwargs['level']
maxnvect = int((level + 1) / 2) + (level + 1) % 2
core.set_local_option('DETCI', 'MAX_NUM_VECS', maxnvect)
if (level + 1) % 2:
core.set_local_option('DETCI', 'MPN_ORDER_SAVE', 2)
else:
core.set_local_option('DETCI', 'MPN_ORDER_SAVE', 1)
elif name in ['mp', 'mp2', 'mp3', 'mp4']:
core.set_local_option('DETCI', 'WFN', 'DETCI')
core.set_local_option('DETCI', 'MPN', 'TRUE')
if name == 'mp2':
level = 2
elif name == 'mp3':
level = 3
elif name == 'mp4':
level = 4
else:
level = kwargs['level']
maxnvect = int((level + 1) / 2) + (level + 1) % 2
core.set_local_option('DETCI', 'MAX_NUM_VECS', maxnvect)
if (level + 1) % 2:
core.set_local_option('DETCI', 'MPN_ORDER_SAVE', 2)
else:
core.set_local_option('DETCI', 'MPN_ORDER_SAVE', 1)
elif name == 'ccsd':
# untested
core.set_local_option('DETCI', 'WFN', 'DETCI')
core.set_local_option('DETCI', 'CC', 'TRUE')
core.set_local_option('DETCI', 'CC_EX_LEVEL', 2)
elif name == 'fci':
core.set_local_option('DETCI', 'WFN', 'DETCI')
core.set_local_option('DETCI', 'FCI', 'TRUE')
elif name == 'cisd':
core.set_local_option('DETCI', 'WFN', 'DETCI')
core.set_local_option('DETCI', 'EX_LEVEL', 2)
elif name == 'cisdt':
core.set_local_option('DETCI', 'WFN', 'DETCI')
core.set_local_option('DETCI', 'EX_LEVEL', 3)
elif name == 'cisdtq':
core.set_local_option('DETCI', 'WFN', 'DETCI')
core.set_local_option('DETCI', 'EX_LEVEL', 4)
elif name == 'ci':
core.set_local_option('DETCI', 'WFN', 'DETCI')
level = kwargs['level']
core.set_local_option('DETCI', 'EX_LEVEL', level)
elif name == 'detci':
pass
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs) # C1 certified
# Ensure IWL files have been written
proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn)
ciwfn = core.detci(ref_wfn)
print_nos = False
if core.get_option("DETCI", "NAT_ORBS"):
ciwfn.ci_nat_orbs()
print_nos = True
proc_util.print_ci_results(ciwfn, name.upper(), ciwfn.variable("HF TOTAL ENERGY"), core.variable("CURRENT ENERGY"), print_nos)
core.print_out("\t\t \"A good bug is a dead bug\" \n\n");
core.print_out("\t\t\t - Starship Troopers\n\n");
core.print_out("\t\t \"I didn't write FORTRAN. That's the problem.\"\n\n");
core.print_out("\t\t\t - Edward Valeev\n");
if core.get_global_option("DIPMOM") and ("mp" not in name.lower()):
# We always would like to print a little dipole information
oeprop = core.OEProp(ciwfn)
oeprop.set_title(name.upper())
oeprop.add("DIPOLE")
oeprop.compute()
ciwfn.oeprop = oeprop
core.set_variable("CURRENT DIPOLE X", core.variable(name.upper() + " DIPOLE X"))
core.set_variable("CURRENT DIPOLE Y", core.variable(name.upper() + " DIPOLE Y"))
core.set_variable("CURRENT DIPOLE Z", core.variable(name.upper() + " DIPOLE Z"))
ciwfn.cleanup_ci()
ciwfn.cleanup_dpd()
optstash.restore()
return ciwfn
def run_dfmp2(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a density-fitted MP2 calculation.
"""
optstash = p4util.OptionsState(
['DF_BASIS_MP2'],
['SCF_TYPE'])
# Alter default algorithm
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DF')
core.print_out(""" SCF Algorithm Type (re)set to DF.\n""")
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs) # C1 certified
core.tstart()
core.print_out('\n')
p4util.banner('DFMP2')
core.print_out('\n')
if core.get_global_option('REFERENCE') == "ROHF":
ref_wfn.semicanonicalize()
aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_MP2",
core.get_option("DFMP2", "DF_BASIS_MP2"),
"RIFIT", core.get_global_option('BASIS'))
ref_wfn.set_basisset("DF_BASIS_MP2", aux_basis)
dfmp2_wfn = core.dfmp2(ref_wfn)
dfmp2_wfn.compute_energy()
if name == 'scs-mp2':
core.set_variable('CURRENT ENERGY', core.variable('SCS-MP2 TOTAL ENERGY'))
core.set_variable('CURRENT CORRELATION ENERGY', core.variable('SCS-MP2 CORRELATION ENERGY'))
elif name == 'mp2':
core.set_variable('CURRENT ENERGY', core.variable('MP2 TOTAL ENERGY'))
core.set_variable('CURRENT CORRELATION ENERGY', core.variable('MP2 CORRELATION ENERGY'))
optstash.restore()
core.tstop()
return dfmp2_wfn
def run_dfep2(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a density-fitted MP2 calculation.
"""
core.tstart()
optstash = p4util.OptionsState(
['DF_BASIS_MP2'],
['SCF_TYPE'])
# Alter default algorithm
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DF')
core.print_out(""" SCF Algorithm Type (re)set to DF.\n""")
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs) # C1 certified
if core.get_global_option('REFERENCE') != "RHF":
raise ValidationError("DF-EP2 is not available for %s references.",
core.get_global_option('REFERENCE'))
# Build the wavefunction
aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_EP2",
core.get_option("DFEP2", "DF_BASIS_EP2"),
"RIFIT", core.get_global_option('BASIS'))
ref_wfn.set_basisset("DF_BASIS_EP2", aux_basis)
dfep2_wfn = core.DFEP2Wavefunction(ref_wfn)
# Figure out what were doing
if core.has_option_changed('DFEP2', 'EP2_ORBITALS'):
ep2_input = core.get_global_option("EP2_ORBITALS")
else:
n_ip = core.get_global_option("EP2_NUM_IP")
n_ea = core.get_global_option("EP2_NUM_EA")
eps = np.hstack(dfep2_wfn.epsilon_a().nph)
irrep_map = np.hstack([np.ones_like(dfep2_wfn.epsilon_a().nph[x]) * x for x in range(dfep2_wfn.nirrep())])
sort = np.argsort(eps)
ip_map = sort[dfep2_wfn.nalpha() - n_ip:dfep2_wfn.nalpha()]
ea_map = sort[dfep2_wfn.nalpha():dfep2_wfn.nalpha() + n_ea]
ep2_input = [[] for x in range(dfep2_wfn.nirrep())]
nalphapi = tuple(dfep2_wfn.nalphapi())
# Add IP info
ip_info = np.unique(irrep_map[ip_map], return_counts=True)
for irrep, cnt in zip(*ip_info):
irrep = int(irrep)
ep2_input[irrep].extend(range(nalphapi[irrep] - cnt, nalphapi[irrep]))
# Add EA info
ea_info = np.unique(irrep_map[ea_map], return_counts=True)
for irrep, cnt in zip(*ea_info):
irrep = int(irrep)
ep2_input[irrep].extend(range(nalphapi[irrep], nalphapi[irrep] + cnt))
# Compute
ret = dfep2_wfn.compute(ep2_input)
# Resort it...
ret_eps = []
for h in range(dfep2_wfn.nirrep()):
ep2_data = ret[h]
inp_data = ep2_input[h]
for i in range(len(ep2_data)):
tmp = [h, ep2_data[i][0], ep2_data[i][1], dfep2_wfn.epsilon_a().get(h, inp_data[i]), inp_data[i]]
ret_eps.append(tmp)
ret_eps.sort(key=lambda x: x[3])
h2ev = constants.hartree2ev
irrep_labels = dfep2_wfn.molecule().irrep_labels()
core.print_out(" ==> Results <==\n\n")
core.print_out(" %8s %12s %12s %8s\n" % ("Orbital", "Koopmans (eV)", "EP2 (eV)", "EP2 PS"))
core.print_out(" ----------------------------------------------\n")
for irrep, ep2, ep2_ps, kt, pos in ret_eps:
label = str(pos + 1) + irrep_labels[irrep]
core.print_out(" %8s % 12.3f % 12.3f % 6.3f\n" % (label, (kt * h2ev), (ep2 * h2ev), ep2_ps))
core.set_variable("EP2 " + label.upper() + " ENERGY", ep2)
core.print_out(" ----------------------------------------------\n\n")
# Figure out the IP and EA
sorted_vals = np.array([x[1] for x in ret_eps])
ip_vals = sorted_vals[sorted_vals < 0]
ea_vals = sorted_vals[sorted_vals > 0]
ip_value = None
ea_value = None
if len(ip_vals):
core.set_variable("EP2 IONIZATION POTENTIAL", ip_vals[-1])
core.set_variable("CURRENT ENERGY", ip_vals[-1])
if len(ea_vals):
core.set_variable("EP2 ELECTRON AFFINITY", ea_vals[0])
if core.variable("EP2 IONIZATION POTENTIAL") == 0.0:
core.set_variable("CURRENT ENERGY", ea_vals[0])
core.print_out(" EP2 has completed successfully!\n\n")
core.tstop()
return dfep2_wfn
def run_dmrgscf(name, **kwargs):
"""Function encoding sequence of PSI module calls for
an DMRG calculation.
"""
optstash = p4util.OptionsState(
['SCF_TYPE'],
['DMRG', 'DMRG_CASPT2_CALC'])
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs)
# Ensure IWL files have been written
proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn)
if 'CASPT2' in name.upper():
core.set_local_option("DMRG", "DMRG_CASPT2_CALC", True)
dmrg_wfn = core.dmrg(ref_wfn)
optstash.restore()
return dmrg_wfn
def run_dmrgci(name, **kwargs):
"""Function encoding sequence of PSI module calls for
an DMRG calculation.
"""
optstash = p4util.OptionsState(
['SCF_TYPE'],
['DMRG', 'DMRG_SCF_MAX_ITER'])
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs)
# Ensure IWL files have been written
proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn)
core.set_local_option('DMRG', 'DMRG_SCF_MAX_ITER', 1)
dmrg_wfn = core.dmrg(ref_wfn)
optstash.restore()
return dmrg_wfn
def run_psimrcc(name, **kwargs):
"""Function encoding sequence of PSI module calls for a PSIMRCC computation
using a reference from the MCSCF module
"""
mcscf_wfn = run_mcscf(name, **kwargs)
psimrcc_e = core.psimrcc(mcscf_wfn)
return mcscf_wfn
def run_psimrcc_scf(name, **kwargs):
"""Function encoding sequence of PSI module calls for a PSIMRCC computation
using a reference from the SCF module
"""
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs)
psimrcc_e = core.psimrcc(ref_wfn)
return ref_wfn
def run_sapt(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a SAPT calculation of any level.
"""
optstash = p4util.OptionsState(
['SCF_TYPE'])
# Alter default algorithm
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DF')
# Get the molecule of interest
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
sapt_dimer = kwargs.pop('molecule', core.get_active_molecule())
else:
core.print_out('Warning! SAPT argument "ref_wfn" is only able to use molecule information.')
sapt_dimer = ref_wfn.molecule()
sapt_basis = kwargs.pop('sapt_basis', 'dimer')
sapt_dimer, monomerA, monomerB = proc_util.prepare_sapt_molecule(sapt_dimer, sapt_basis)
if (core.get_option('SCF', 'REFERENCE') != 'RHF') and (name.upper() != "SAPT0"):
raise ValidationError('Only SAPT0 supports a reference different from \"reference rhf\".')
do_delta_mp2 = True if name.endswith('dmp2') else False
# raise Exception("")
ri = core.get_global_option('SCF_TYPE')
df_ints_io = core.get_option('SCF', 'DF_INTS_IO')
# inquire if above at all applies to dfmp2
core.IO.set_default_namespace('dimer')
core.print_out('\n')
p4util.banner('Dimer HF')
core.print_out('\n')
# Compute dimer wavefunction
if (sapt_basis == 'dimer') and (ri == 'DF'):
core.set_global_option('DF_INTS_IO', 'SAVE')
dimer_wfn = scf_helper('RHF', molecule=sapt_dimer, **kwargs)
if do_delta_mp2:
select_mp2(name, ref_wfn=dimer_wfn, **kwargs)
mp2_corl_interaction_e = core.variable('MP2 CORRELATION ENERGY')
if (sapt_basis == 'dimer') and (ri == 'DF'):
core.set_global_option('DF_INTS_IO', 'LOAD')
# Compute Monomer A wavefunction
if (sapt_basis == 'dimer') and (ri == 'DF'):
core.IO.change_file_namespace(97, 'dimer', 'monomerA')
core.IO.set_default_namespace('monomerA')
core.print_out('\n')
p4util.banner('Monomer A HF')
core.print_out('\n')
monomerA_wfn = scf_helper('RHF', molecule=monomerA, **kwargs)
if do_delta_mp2:
select_mp2(name, ref_wfn=monomerA_wfn, **kwargs)
mp2_corl_interaction_e -= core.variable('MP2 CORRELATION ENERGY')
# Compute Monomer B wavefunction
if (sapt_basis == 'dimer') and (ri == 'DF'):
core.IO.change_file_namespace(97, 'monomerA', 'monomerB')
core.IO.set_default_namespace('monomerB')
core.print_out('\n')
p4util.banner('Monomer B HF')
core.print_out('\n')
monomerB_wfn = scf_helper('RHF', molecule=monomerB, **kwargs)
# Delta MP2
if do_delta_mp2:
select_mp2(name, ref_wfn=monomerB_wfn, **kwargs)
mp2_corl_interaction_e -= core.variable('MP2 CORRELATION ENERGY')
core.set_variable('SAPT MP2 CORRELATION ENERGY', mp2_corl_interaction_e)
core.set_global_option('DF_INTS_IO', df_ints_io)
if core.get_option('SCF', 'REFERENCE') == 'RHF':
core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERA, 'monomerA', 'dimer')
core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERB, 'monomerB', 'dimer')
core.IO.set_default_namespace('dimer')
core.set_local_option('SAPT', 'E_CONVERGENCE', 10e-10)
core.set_local_option('SAPT', 'D_CONVERGENCE', 10e-10)
if name in ['sapt0', 'ssapt0']:
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT0')
elif name == 'sapt2':
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2')
elif name in ['sapt2+', 'sapt2+dmp2']:
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+')
core.set_local_option('SAPT', 'DO_CCD_DISP', False)
elif name in ['sapt2+(3)', 'sapt2+(3)dmp2']:
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3')
core.set_local_option('SAPT', 'DO_THIRD_ORDER', False)
core.set_local_option('SAPT', 'DO_CCD_DISP', False)
elif name in ['sapt2+3', 'sapt2+3dmp2']:
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3')
core.set_local_option('SAPT', 'DO_THIRD_ORDER', True)
core.set_local_option('SAPT', 'DO_CCD_DISP', False)
elif name in ['sapt2+(ccd)', 'sapt2+(ccd)dmp2']:
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+')
core.set_local_option('SAPT', 'DO_CCD_DISP', True)
elif name in ['sapt2+(3)(ccd)', 'sapt2+(3)(ccd)dmp2']:
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3')
core.set_local_option('SAPT', 'DO_THIRD_ORDER', False)
core.set_local_option('SAPT', 'DO_CCD_DISP', True)
elif name in ['sapt2+3(ccd)', 'sapt2+3(ccd)dmp2']:
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3')
core.set_local_option('SAPT', 'DO_THIRD_ORDER', True)
core.set_local_option('SAPT', 'DO_CCD_DISP', True)
# Make sure we are not going to run CPHF on ROHF, since its MO Hessian
# is not SPD
if core.get_option('SCF', 'REFERENCE') == 'ROHF':
core.set_local_option('SAPT','COUPLED_INDUCTION',False)
core.print_out(' Coupled induction not available for ROHF.\n')
core.print_out(' Proceeding with uncoupled induction only.\n')
core.print_out(" Constructing Basis Sets for SAPT...\n\n")
aux_basis = core.BasisSet.build(dimer_wfn.molecule(), "DF_BASIS_SAPT",
core.get_global_option("DF_BASIS_SAPT"),
"RIFIT", core.get_global_option("BASIS"))
dimer_wfn.set_basisset("DF_BASIS_SAPT", aux_basis)
if core.get_global_option("DF_BASIS_ELST") == "":
dimer_wfn.set_basisset("DF_BASIS_ELST", aux_basis)
else:
aux_basis = core.BasisSet.build(dimer_wfn.molecule(), "DF_BASIS_ELST",
core.get_global_option("DF_BASIS_ELST"),
"RIFIT", core.get_global_option("BASIS"))
dimer_wfn.set_basisset("DF_BASIS_ELST", aux_basis)
core.print_out('\n')
p4util.banner(name.upper())
core.print_out('\n')
e_sapt = core.sapt(dimer_wfn, monomerA_wfn, monomerB_wfn)
from psi4.driver.qcdb.psivardefs import sapt_psivars
p4util.expand_psivars(sapt_psivars())
optstash.restore()
# Make sure we got induction, otherwise replace it with uncoupled induction
which_ind = 'IND'
target_ind = 'IND'
if not core.has_variable(' '.join([name.upper(), which_ind, 'ENERGY'])):
which_ind='IND,U'
for term in ['ELST', 'EXCH', 'DISP', 'TOTAL']:
core.set_variable(' '.join(['SAPT', term, 'ENERGY']),
core.variable(' '.join([name.upper(), term, 'ENERGY'])))
# Special induction case
core.set_variable(' '.join(['SAPT', target_ind, 'ENERGY']),
core.variable(' '.join([name.upper(), which_ind, 'ENERGY'])))
core.set_variable('CURRENT ENERGY', core.variable('SAPT TOTAL ENERGY'))
return dimer_wfn
def run_sapt_ct(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a charge-transfer SAPT calcuation of any level.
"""
optstash = p4util.OptionsState(
['SCF_TYPE'])
if 'ref_wfn' in kwargs:
core.print_out('\nWarning! Argument ref_wfn is not valid for sapt computations\n')
# Alter default algorithm
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DF')
# Get the molecule of interest
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
sapt_dimer = kwargs.pop('molecule', core.get_active_molecule())
else:
core.print_out('Warning! SAPT argument "ref_wfn" is only able to use molecule information.')
sapt_dimer = ref_wfn.molecule()
sapt_dimer, monomerA, monomerB = proc_util.prepare_sapt_molecule(sapt_dimer, "dimer")
monomerAm = sapt_dimer.extract_subsets(1)
monomerAm.set_name('monomerAm')
monomerBm = sapt_dimer.extract_subsets(2)
monomerBm.set_name('monomerBm')
if core.get_option('SCF', 'REFERENCE') != 'RHF':
raise ValidationError('SAPT requires requires \"reference rhf\".')
ri = core.get_global_option('SCF_TYPE')
df_ints_io = core.get_option('SCF', 'DF_INTS_IO')
# inquire if above at all applies to dfmp2
core.IO.set_default_namespace('dimer')
core.print_out('\n')
p4util.banner('Dimer HF')
core.print_out('\n')
core.set_global_option('DF_INTS_IO', 'SAVE')
dimer_wfn = scf_helper('RHF', molecule=sapt_dimer, **kwargs)
core.set_global_option('DF_INTS_IO', 'LOAD')
if (ri == 'DF'):
core.IO.change_file_namespace(97, 'dimer', 'monomerA')
core.IO.set_default_namespace('monomerA')
core.print_out('\n')
p4util.banner('Monomer A HF (Dimer Basis)')
core.print_out('\n')
monomerA_wfn = scf_helper('RHF', molecule=monomerA, **kwargs)
if (ri == 'DF'):
core.IO.change_file_namespace(97, 'monomerA', 'monomerB')
core.IO.set_default_namespace('monomerB')
core.print_out('\n')
p4util.banner('Monomer B HF (Dimer Basis)')
core.print_out('\n')
monomerB_wfn = scf_helper('RHF', molecule=monomerB, **kwargs)
core.set_global_option('DF_INTS_IO', df_ints_io)
core.IO.set_default_namespace('monomerAm')
core.print_out('\n')
p4util.banner('Monomer A HF (Monomer Basis)')
core.print_out('\n')
monomerAm_wfn = scf_helper('RHF', molecule=monomerAm, **kwargs)
core.IO.set_default_namespace('monomerBm')
core.print_out('\n')
p4util.banner('Monomer B HF (Monomer Basis)')
core.print_out('\n')
monomerBm_wfn = scf_helper('RHF', molecule=monomerBm, **kwargs)
core.IO.set_default_namespace('dimer')
core.set_local_option('SAPT', 'E_CONVERGENCE', 10e-10)
core.set_local_option('SAPT', 'D_CONVERGENCE', 10e-10)
if name == 'sapt0-ct':
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT0')
elif name == 'sapt2-ct':
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2')
elif name == 'sapt2+-ct':
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+')
elif name == 'sapt2+(3)-ct':
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3')
core.set_local_option('SAPT', 'DO_THIRD_ORDER', False)
elif name == 'sapt2+3-ct':
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3')
core.set_local_option('SAPT', 'DO_THIRD_ORDER', True)
elif name == 'sapt2+(ccd)-ct':
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+')
core.set_local_option('SAPT', 'DO_CCD_DISP', True)
elif name == 'sapt2+(3)(ccd)-ct':
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3')
core.set_local_option('SAPT', 'DO_THIRD_ORDER', False)
core.set_local_option('SAPT', 'DO_CCD_DISP', True)
elif name == 'sapt2+3(ccd)-ct':
core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3')
core.set_local_option('SAPT', 'DO_THIRD_ORDER', True)
core.set_local_option('SAPT', 'DO_CCD_DISP', True)
core.print_out('\n')
aux_basis = core.BasisSet.build(dimer_wfn.molecule(), "DF_BASIS_SAPT",
core.get_global_option("DF_BASIS_SAPT"),
"RIFIT", core.get_global_option("BASIS"))
dimer_wfn.set_basisset("DF_BASIS_SAPT", aux_basis)
if core.get_global_option("DF_BASIS_ELST") == "":
dimer_wfn.set_basisset("DF_BASIS_ELST", aux_basis)
else:
aux_basis = core.BasisSet.build(dimer_wfn.molecule(), "DF_BASIS_ELST",
core.get_global_option("DF_BASIS_ELST"),
"RIFIT", core.get_global_option("BASIS"))
dimer_wfn.set_basisset("DF_BASIS_ELST", aux_basis)
core.print_out('\n')
p4util.banner('SAPT Charge Transfer')
core.print_out('\n')
core.print_out('\n')
p4util.banner('Dimer Basis SAPT')
core.print_out('\n')
core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERA, 'monomerA', 'dimer')
core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERB, 'monomerB', 'dimer')
e_sapt = core.sapt(dimer_wfn, monomerA_wfn, monomerB_wfn)
CTd = core.variable('SAPT CT ENERGY')
core.print_out('\n')
p4util.banner('Monomer Basis SAPT')
core.print_out('\n')
core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERA, 'monomerAm', 'dimer')
core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERB, 'monomerBm', 'dimer')
e_sapt = core.sapt(dimer_wfn, monomerAm_wfn, monomerBm_wfn)
CTm = core.variable('SAPT CT ENERGY')
CT = CTd - CTm
units = (1000.0, constants.hartree2kcalmol, constants.hartree2kJmol)
core.print_out('\n\n')
core.print_out(' SAPT Charge Transfer Analysis\n')
core.print_out(' ------------------------------------------------------------------------------------------------\n')
core.print_out(' SAPT Induction (Dimer Basis) %12.4lf [mEh] %12.4lf [kcal/mol] %12.4lf [kJ/mol]\n' %
tuple(CTd * u for u in units))
core.print_out(' SAPT Induction (Monomer Basis)%12.4lf [mEh] %12.4lf [kcal/mol] %12.4lf [kJ/mol]\n' %
tuple(CTm * u for u in units))
core.print_out(' SAPT Charge Transfer %12.4lf [mEh] %12.4lf [kcal/mol] %12.4lf [kJ/mol]\n\n' %
tuple(CT * u for u in units))
core.set_variable('SAPT CT ENERGY', CT)
optstash.restore()
return dimer_wfn
def run_fisapt(name, **kwargs):
"""Function encoding sequence of PSI module calls for
an F/ISAPT0 computation
"""
optstash = p4util.OptionsState(
['SCF_TYPE'])
# Alter default algorithm
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DF')
# Get the molecule of interest
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
sapt_dimer = kwargs.pop('molecule', core.get_active_molecule())
else:
core.print_out('Warning! FISAPT argument "ref_wfn" is only able to use molecule information.')
sapt_dimer = ref_wfn.molecule()
sapt_dimer.update_geometry() # make sure since mol from wfn, kwarg, or P::e
# Shifting to C1 so we need to copy the active molecule
if sapt_dimer.schoenflies_symbol() != 'c1':
core.print_out(' FISAPT does not make use of molecular symmetry, further calculations in C1 point group.\n')
sapt_dimer = sapt_dimer.clone()
sapt_dimer.reset_point_group('c1')
sapt_dimer.fix_orientation(True)
sapt_dimer.fix_com(True)
sapt_dimer.update_geometry()
if core.get_option('SCF', 'REFERENCE') != 'RHF':
raise ValidationError('FISAPT requires requires \"reference rhf\".')
if ref_wfn is None:
core.timer_on("FISAPT: Dimer SCF")
ref_wfn = scf_helper('RHF', molecule=sapt_dimer, **kwargs)
core.timer_off("FISAPT: Dimer SCF")
core.print_out(" Constructing Basis Sets for FISAPT...\n\n")
scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF",
core.get_option("SCF", "DF_BASIS_SCF"),
"JKFIT", core.get_global_option('BASIS'),
puream=ref_wfn.basisset().has_puream())
ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis)
sapt_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SAPT",
core.get_global_option("DF_BASIS_SAPT"),
"RIFIT", core.get_global_option("BASIS"),
ref_wfn.basisset().has_puream())
ref_wfn.set_basisset("DF_BASIS_SAPT", sapt_basis)
minao = core.BasisSet.build(ref_wfn.molecule(), "BASIS",
core.get_global_option("MINAO_BASIS"))
ref_wfn.set_basisset("MINAO", minao)
fisapt_wfn = core.FISAPT(ref_wfn)
from .sapt import fisapt_proc
fisapt_wfn.compute_energy()
optstash.restore()
return ref_wfn
def run_mrcc(name, **kwargs):
"""Function that prepares environment and input files
for a calculation calling Kallay's MRCC code.
"""
# Check to see if we really need to run the SCF code.
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs)
vscf = core.variable('SCF TOTAL ENERGY')
# The parse_arbitrary_order method provides us the following information
# We require that level be provided. level is a dictionary
# of settings to be passed to core.mrcc
if not('level' in kwargs):
raise ValidationError('level parameter was not provided.')
level = kwargs['level']
# Fullname is the string we need to search for in iface
fullname = level['fullname']
# User can provide 'keep' to the method.
# When provided, do not delete the MRCC scratch directory.
keep = False
if 'keep' in kwargs:
keep = kwargs['keep']
# Save current directory location
current_directory = os.getcwd()
# Find environment by merging PSIPATH and PATH environment variables
lenv = {
'PATH': ':'.join([os.path.abspath(x) for x in os.environ.get('PSIPATH', '').split(':') if x != '']) + \
':' + os.environ.get('PATH'),
'LD_LIBRARY_PATH': os.environ.get('LD_LIBRARY_PATH')
}
# Filter out None values as subprocess will fault on them
lenv = {k: v for k, v in lenv.items() if v is not None}
# Need to move to the scratch directory, perferrably into a separate directory in that location
psi_io = core.IOManager.shared_object()
os.chdir(psi_io.get_default_path())
# Make new directory specifically for mrcc
mrcc_tmpdir = 'mrcc_' + str(os.getpid())
if 'path' in kwargs:
mrcc_tmpdir = kwargs['path']
# Check to see if directory already exists, if not, create.
if os.path.exists(mrcc_tmpdir) is False:
os.mkdir(mrcc_tmpdir)
# Move into the new directory
os.chdir(mrcc_tmpdir)
# Generate integrals and input file (dumps files to the current directory)
core.mrcc_generate_input(ref_wfn, level)
# Load the fort.56 file
# and dump a copy into the outfile
core.print_out('\n===== Begin fort.56 input for MRCC ======\n')
core.print_out(open('fort.56', 'r').read())
core.print_out('===== End fort.56 input for MRCC ======\n')
# Modify the environment:
# PGI Fortan prints warning to screen if STOP is used
lenv['NO_STOP_MESSAGE'] = '1'
# Obtain the number of threads MRCC should use
lenv['OMP_NUM_THREADS'] = str(core.get_num_threads())
# If the user provided MRCC_OMP_NUM_THREADS set the environ to it
if core.has_option_changed('MRCC', 'MRCC_OMP_NUM_THREADS') == True:
lenv['OMP_NUM_THREADS'] = str(core.get_option('MRCC', 'MRCC_OMP_NUM_THREADS'))
# Call dmrcc, directing all screen output to the output file
external_exe = 'dmrcc'
try:
retcode = subprocess.Popen([external_exe], bufsize=0, stdout=subprocess.PIPE, env=lenv)
except OSError as e:
sys.stderr.write('Program %s not found in path or execution failed: %s\n' % (external_exe, e.strerror))
core.print_out('Program %s not found in path or execution failed: %s\n' % (external_exe, e.strerror))
message = ("Program %s not found in path or execution failed: %s\n" % (external_exe, e.strerror))
raise ValidationError(message)
c4out = ''
while True:
data = retcode.stdout.readline()
if not data:
break
core.print_out(data.decode('utf-8'))
c4out += data.decode('utf-8')
# Scan iface file and grab the file energy.
ene = 0.0
for line in open('iface'):
fields = line.split()
m = fields[1]
try:
ene = float(fields[5])
if m == "MP(2)":
m = "MP2"
core.set_variable(m + ' TOTAL ENERGY', ene)
core.set_variable(m + ' CORRELATION ENERGY', ene - vscf)
except ValueError:
continue
# The last 'ene' in iface is the one the user requested.
core.set_variable('CURRENT ENERGY', ene)
core.set_variable('CURRENT CORRELATION ENERGY', ene - vscf)
# Load the iface file
iface = open('iface', 'r')
iface_contents = iface.read()
# Delete mrcc tempdir
os.chdir('..')
try:
# Delete unless we're told not to
if (keep is False and not('path' in kwargs)):
shutil.rmtree(mrcc_tmpdir)
except OSError as e:
print('Unable to remove MRCC temporary directory %s' % e, file=sys.stderr)
exit(1)
# Return to submission directory
os.chdir(current_directory)
# If we're told to keep the files or the user provided a path, do nothing.
if (keep != False or ('path' in kwargs)):
core.print_out('\nMRCC scratch files have been kept.\n')
core.print_out('They can be found in ' + mrcc_tmpdir)
# Dump iface contents to output
core.print_out('\n')
p4util.banner('Full results from MRCC')
core.print_out('\n')
core.print_out(iface_contents)
return ref_wfn
def run_fnodfcc(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a DF-CCSD(T) computation.
>>> set cc_type df
>>> energy('fno-ccsd(t)')
"""
kwargs = p4util.kwargs_lower(kwargs)
# stash user options
optstash = p4util.OptionsState(
['FNOCC', 'COMPUTE_TRIPLES'],
['FNOCC', 'DFCC'],
['FNOCC', 'NAT_ORBS'],
['FNOCC', 'RUN_CEPA'],
['FNOCC', 'DF_BASIS_CC'],
['SCF', 'DF_BASIS_SCF'],
['SCF', 'DF_INTS_IO'])
core.set_local_option('FNOCC', 'DFCC', True)
core.set_local_option('FNOCC', 'RUN_CEPA', False)
# throw an exception for open-shells
if core.get_option('SCF', 'REFERENCE') != 'RHF':
raise ValidationError("""Error: %s requires 'reference rhf'.""" % name)
def set_cholesky_from(mtd_type):
type_val = core.get_global_option(mtd_type)
if type_val == 'CD':
core.set_local_option('FNOCC', 'DF_BASIS_CC', 'CHOLESKY')
# Alter default algorithm
if not core.has_global_option_changed('SCF_TYPE'):
optstash.add_option(['SCF_TYPE'])
core.set_global_option('SCF_TYPE', 'CD')
core.print_out(""" SCF Algorithm Type (re)set to CD.\n""")
elif type_val in ['DISK_DF', 'DF']:
if core.get_option('FNOCC', 'DF_BASIS_CC') == 'CHOLESKY':
core.set_local_option('FNOCC', 'DF_BASIS_CC', '')
proc_util.check_disk_df(name.upper(), optstash)
else:
raise ValidationError("""Invalid type '%s' for DFCC""" % type_val)
# triples?
if name == 'ccsd':
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', False)
set_cholesky_from('CC_TYPE')
elif name == 'ccsd(t)':
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', True)
set_cholesky_from('CC_TYPE')
elif name == 'fno-ccsd':
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', False)
core.set_local_option('FNOCC', 'NAT_ORBS', True)
set_cholesky_from('CC_TYPE')
elif name == 'fno-ccsd(t)':
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', True)
core.set_local_option('FNOCC', 'NAT_ORBS', True)
set_cholesky_from('CC_TYPE')
if core.get_global_option('SCF_TYPE') not in ['CD', 'DISK_DF']:
raise ValidationError("""Invalid scf_type for DFCC.""")
# save DF or CD ints generated by SCF for use in CC
core.set_local_option('SCF', 'DF_INTS_IO', 'SAVE')
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, use_c1=True, **kwargs) # C1 certified
else:
if ref_wfn.molecule().schoenflies_symbol() != 'c1':
raise ValidationError(""" FNOCC does not make use of molecular symmetry: """
"""reference wavefunction must be C1.\n""")
core.print_out(" Constructing Basis Sets for FNOCC...\n\n")
scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF",
core.get_option("SCF", "DF_BASIS_SCF"),
"JKFIT", core.get_global_option('BASIS'),
puream=ref_wfn.basisset().has_puream())
ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis)
aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_CC",
core.get_global_option("DF_BASIS_CC"),
"RIFIT", core.get_global_option("BASIS"))
ref_wfn.set_basisset("DF_BASIS_CC", aux_basis)
fnocc_wfn = core.fnocc(ref_wfn)
optstash.restore()
return fnocc_wfn
def run_fnocc(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a QCISD(T), CCSD(T), MP2.5, MP3, and MP4 computation.
>>> energy('fno-ccsd(t)')
"""
kwargs = p4util.kwargs_lower(kwargs)
level = kwargs.get('level', 0)
# stash user options:
optstash = p4util.OptionsState(
['TRANSQT2', 'WFN'],
['FNOCC', 'RUN_MP2'],
['FNOCC', 'RUN_MP3'],
['FNOCC', 'RUN_MP4'],
['FNOCC', 'RUN_CCSD'],
['FNOCC', 'COMPUTE_TRIPLES'],
['FNOCC', 'COMPUTE_MP4_TRIPLES'],
['FNOCC', 'DFCC'],
['FNOCC', 'RUN_CEPA'],
['FNOCC', 'USE_DF_INTS'],
['FNOCC', 'NAT_ORBS'])
core.set_local_option('FNOCC', 'DFCC', False)
core.set_local_option('FNOCC', 'RUN_CEPA', False)
core.set_local_option('FNOCC', 'USE_DF_INTS', False)
# which method?
if name == 'ccsd':
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', False)
core.set_local_option('FNOCC', 'RUN_CCSD', True)
elif name == 'ccsd(t)':
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', True)
core.set_local_option('FNOCC', 'RUN_CCSD', True)
elif name == 'fno-ccsd':
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', False)
core.set_local_option('FNOCC', 'RUN_CCSD', True)
core.set_local_option('FNOCC', 'NAT_ORBS', True)
elif name == 'fno-ccsd(t)':
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', True)
core.set_local_option('FNOCC', 'RUN_CCSD', True)
core.set_local_option('FNOCC', 'NAT_ORBS', True)
elif name == 'qcisd':
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', False)
core.set_local_option('FNOCC', 'RUN_CCSD', False)
elif name == 'qcisd(t)':
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', True)
core.set_local_option('FNOCC', 'RUN_CCSD', False)
elif name == 'fno-qcisd':
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', False)
core.set_local_option('FNOCC', 'RUN_CCSD', False)
core.set_local_option('FNOCC', 'NAT_ORBS', True)
elif name == 'fno-qcisd(t)':
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', True)
core.set_local_option('FNOCC', 'NAT_ORBS', True)
core.set_local_option('FNOCC', 'RUN_CCSD', False)
elif name == 'mp2':
core.set_local_option('FNOCC', 'RUN_MP2', True)
elif name == 'fno-mp3':
core.set_local_option('FNOCC', 'RUN_MP3', True)
core.set_local_option('FNOCC', 'NAT_ORBS', True)
elif name == 'fno-mp4':
core.set_local_option('FNOCC', 'RUN_MP4', True)
core.set_local_option('FNOCC', 'COMPUTE_MP4_TRIPLES', True)
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', True)
core.set_local_option('FNOCC', 'NAT_ORBS', True)
elif name == 'mp4(sdq)':
core.set_local_option('FNOCC', 'RUN_MP4', True)
core.set_local_option('FNOCC', 'COMPUTE_MP4_TRIPLES', False)
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', False)
elif name == 'fno-mp4(sdq)':
core.set_local_option('FNOCC', 'RUN_MP4', True)
core.set_local_option('FNOCC', 'COMPUTE_MP4_TRIPLES', False)
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', False)
core.set_local_option('FNOCC', 'NAT_ORBS', True)
elif name == 'mp3':
core.set_local_option('FNOCC', 'RUN_MP3', True)
elif name == 'mp4':
core.set_local_option('FNOCC', 'RUN_MP4', True)
core.set_local_option('FNOCC', 'COMPUTE_MP4_TRIPLES', True)
core.set_local_option('FNOCC', 'COMPUTE_TRIPLES', True)
# throw an exception for open-shells
if core.get_option('SCF', 'REFERENCE') != 'RHF':
raise ValidationError("""Error: %s requires 'reference rhf'.""" % name)
# Bypass the scf call if a reference wavefunction is given
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs) # C1 certified
if core.get_option('FNOCC', 'USE_DF_INTS') == False:
# Ensure IWL files have been written
proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn)
else:
core.print_out(" Constructing Basis Sets for FNOCC...\n\n")
scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF",
core.get_option("SCF", "DF_BASIS_SCF"),
"JKFIT", core.get_global_option('BASIS'),
puream=ref_wfn.basisset().has_puream())
ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis)
fnocc_wfn = core.fnocc(ref_wfn)
# set current correlation energy and total energy. only need to treat mpn here.
if name == 'mp3':
emp3 = core.variable("MP3 TOTAL ENERGY")
cemp3 = core.variable("MP3 CORRELATION ENERGY")
core.set_variable("CURRENT ENERGY", emp3)
core.set_variable("CURRENT CORRELATION ENERGY", cemp3)
elif name == 'fno-mp3':
emp3 = core.variable("MP3 TOTAL ENERGY")
cemp3 = core.variable("MP3 CORRELATION ENERGY")
core.set_variable("CURRENT ENERGY", emp3)
core.set_variable("CURRENT CORRELATION ENERGY", cemp3)
elif name == 'mp4(sdq)':
emp4sdq = core.variable("MP4(SDQ) TOTAL ENERGY")
cemp4sdq = core.variable("MP4(SDQ) CORRELATION ENERGY")
core.set_variable("CURRENT ENERGY", emp4sdq)
core.set_variable("CURRENT CORRELATION ENERGY", cemp4sdq)
elif name == 'fno-mp4(sdq)':
emp4sdq = core.variable("MP4(SDQ) TOTAL ENERGY")
cemp4sdq = core.variable("MP4(SDQ) CORRELATION ENERGY")
core.set_variable("CURRENT ENERGY", emp4sdq)
core.set_variable("CURRENT CORRELATION ENERGY", cemp4sdq)
elif name == 'fno-mp4':
emp4 = core.variable("MP4 TOTAL ENERGY")
cemp4 = core.variable("MP4 CORRELATION ENERGY")
core.set_variable("CURRENT ENERGY", emp4)
core.set_variable("CURRENT CORRELATION ENERGY", cemp4)
elif name == 'mp4':
emp4 = core.variable("MP4 TOTAL ENERGY")
cemp4 = core.variable("MP4 CORRELATION ENERGY")
core.set_variable("CURRENT ENERGY", emp4)
core.set_variable("CURRENT CORRELATION ENERGY", cemp4)
optstash.restore()
return fnocc_wfn
def run_cepa(name, **kwargs):
"""Function encoding sequence of PSI module calls for
a cepa-like calculation.
>>> energy('cepa(1)')
"""
kwargs = p4util.kwargs_lower(kwargs)
# save user options
optstash = p4util.OptionsState(
['TRANSQT2', 'WFN'],
['FNOCC', 'NAT_ORBS'],
['FNOCC', 'RUN_CEPA'],
['FNOCC', 'USE_DF_INTS'],
['FNOCC', 'CEPA_NO_SINGLES'])
core.set_local_option('FNOCC', 'RUN_CEPA', True)
core.set_local_option('FNOCC', 'USE_DF_INTS', False)
# what type of cepa?
if name in ['lccd', 'fno-lccd']:
cepa_level = 'cepa(0)'
core.set_local_option('FNOCC', 'CEPA_NO_SINGLES', True)
elif name in ['cepa(0)', 'fno-cepa(0)', 'lccsd', 'fno-lccsd']:
cepa_level = 'cepa(0)'
core.set_local_option('FNOCC', 'CEPA_NO_SINGLES', False)
elif name in ['cepa(1)', 'fno-cepa(1)']:
cepa_level = 'cepa(1)'
elif name in ['cepa(3)', 'fno-cepa(3)']:
cepa_level = 'cepa(3)'
elif name in ['acpf', 'fno-acpf']:
cepa_level = 'acpf'
elif name in ['aqcc', 'fno-aqcc']:
cepa_level = 'aqcc'
elif name in ['cisd', 'fno-cisd']:
cepa_level = 'cisd'
else:
raise ValidationError("""Error: %s not implemented\n""" % name)
core.set_local_option('FNOCC', 'CEPA_LEVEL', cepa_level.upper())
if name in ['fno-lccd', 'fno-lccsd', 'fno-cepa(0)', 'fno-cepa(1)', 'fno-cepa(3)',
'fno-acpf', 'fno-aqcc', 'fno-cisd']:
core.set_local_option('FNOCC', 'NAT_ORBS', True)
# throw an exception for open-shells
if core.get_option('SCF', 'REFERENCE') != 'RHF':
raise ValidationError("""Error: %s requires 'reference rhf'.""" % name)
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_wfn = scf_helper(name, **kwargs) # C1 certified
if core.get_option('FNOCC', 'USE_DF_INTS') == False:
# Ensure IWL files have been written
proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn)
else:
core.print_out(" Constructing Basis Sets for FISAPT...\n\n")
scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF",
core.get_option("SCF", "DF_BASIS_SCF"),
"JKFIT", core.get_global_option('BASIS'),
puream=ref_wfn.basisset().has_puream())
ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis)
fnocc_wfn = core.fnocc(ref_wfn)
# one-electron properties
if core.get_option('FNOCC', 'DIPMOM'):
if cepa_level in ['cepa(1)', 'cepa(3)']:
core.print_out("""\n Error: one-electron properties not implemented for %s\n\n""" % name)
elif core.get_option('FNOCC', 'NAT_ORBS'):
core.print_out("""\n Error: one-electron properties not implemented for %s\n\n""" % name)
else:
p4util.oeprop(fnocc_wfn, 'DIPOLE', 'QUADRUPOLE', 'MULLIKEN_CHARGES', 'NO_OCCUPATIONS', title=cepa_level.upper())
optstash.restore()
return fnocc_wfn
def run_detcas(name, **kwargs):
"""Function encoding sequence of PSI module calls for
determinant-based multireference wavefuncations,
namely CASSCF and RASSCF.
"""
optstash = p4util.OptionsState(
['DETCI', 'WFN'],
['SCF_TYPE'],
['ONEPDM'],
['OPDM_RELAX']
)
user_ref = core.get_option('DETCI', 'REFERENCE')
if user_ref not in ['RHF', 'ROHF']:
raise ValidationError('Reference %s for DETCI is not available.' % user_ref)
if name == 'rasscf':
core.set_local_option('DETCI', 'WFN', 'RASSCF')
elif name == 'casscf':
core.set_local_option('DETCI', 'WFN', 'CASSCF')
else:
raise ValidationError("Run DETCAS: Name %s not understood" % name)
ref_wfn = kwargs.get('ref_wfn', None)
if ref_wfn is None:
ref_optstash = p4util.OptionsState(
['SCF_TYPE'],
['DF_BASIS_SCF'],
['DF_BASIS_MP2'],
['ONEPDM'],
['OPDM_RELAX']
)
# No real reason to do a conventional guess
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DF')
# If RHF get MP2 NO's
# Why doesnt this work for conv?
if (('DF' in core.get_global_option('SCF_TYPE')) and (user_ref == 'RHF') and
(core.get_option('DETCI', 'MCSCF_TYPE') in ['DF', 'AO']) and
(core.get_option("DETCI", "MCSCF_GUESS") == "MP2")):
core.set_global_option('ONEPDM', True)
core.set_global_option('OPDM_RELAX', False)
ref_wfn = run_dfmp2_gradient(name, **kwargs)
else:
ref_wfn = scf_helper(name, **kwargs)
# Ensure IWL files have been written
if (core.get_option('DETCI', 'MCSCF_TYPE') == 'CONV'):
mints = core.MintsHelper(ref_wfn.basisset())
mints.set_print(1)
mints.integrals()
ref_optstash.restore()
# The DF case
if core.get_option('DETCI', 'MCSCF_TYPE') == 'DF':
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DF')
core.print_out(" Constructing Basis Sets for MCSCF...\n\n")
scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF",
core.get_option("SCF", "DF_BASIS_SCF"),
"JKFIT", core.get_global_option('BASIS'),
puream=ref_wfn.basisset().has_puream())
ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis)
# The AO case
elif core.get_option('DETCI', 'MCSCF_TYPE') == 'AO':
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DIRECT')
# The conventional case
elif core.get_option('DETCI', 'MCSCF_TYPE') == 'CONV':
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'PK')
# Ensure IWL files have been written
proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn)
else:
raise ValidationError("Run DETCAS: MCSCF_TYPE %s not understood." % str(core.get_option('DETCI', 'MCSCF_TYPE')))
# Second-order SCF requires non-symmetric density matrix support
if core.get_option('DETCI', 'MCSCF_ALGORITHM') in ['AH', 'OS']:
proc_util.check_non_symmetric_jk_density("Second-order MCSCF")
ciwfn = mcscf.mcscf_solver(ref_wfn)
# We always would like to print a little dipole information
oeprop = core.OEProp(ciwfn)
oeprop.set_title(name.upper())
oeprop.add("DIPOLE")
oeprop.compute()
ciwfn.oeprop = oeprop
core.set_variable("CURRENT DIPOLE X", core.variable(name.upper() + " DIPOLE X"))
core.set_variable("CURRENT DIPOLE Y", core.variable(name.upper() + " DIPOLE Y"))
core.set_variable("CURRENT DIPOLE Z", core.variable(name.upper() + " DIPOLE Z"))
optstash.restore()
return ciwfn
def run_efp(name, **kwargs):
"""Function encoding sequence of module calls for a pure EFP
computation (ignore any QM atoms).
"""
efp_molecule = kwargs.get('molecule', core.get_active_molecule())
try:
efpobj = efp_molecule.EFP
except AttributeError:
raise ValidationError("""Method 'efp' not available without EFP fragments in molecule""")
# print efp geom in [A]
core.print_out(efpobj.banner())
core.print_out(efpobj.geometry_summary(units_to_bohr=constants.bohr2angstroms))
# set options
# * 'chtr', 'qm_exch', 'qm_disp', 'qm_chtr' may be enabled in a future libefp release
efpopts = {}
for opt in ['elst', 'exch', 'ind', 'disp',
'elst_damping', 'ind_damping', 'disp_damping']:
psiopt = 'EFP_' + opt.upper()
if core.has_option_changed('EFP', psiopt):
efpopts[opt] = core.get_option('EFP', psiopt)
efpopts['qm_elst'] = False
efpopts['qm_ind'] = False
efpobj.set_opts(efpopts, label='psi', append='psi')
do_gradient = core.get_option('EFP', 'DERTYPE') == 'FIRST'
# compute and report
efpobj.compute(do_gradient=do_gradient)
core.print_out(efpobj.energy_summary(label='psi'))
ene = efpobj.get_energy(label='psi')
core.set_variable('EFP ELST ENERGY', ene['electrostatic'] + ene['charge_penetration'] + ene['electrostatic_point_charges'])
core.set_variable('EFP IND ENERGY', ene['polarization'])
core.set_variable('EFP DISP ENERGY', ene['dispersion'])
core.set_variable('EFP EXCH ENERGY', ene['exchange_repulsion'])
core.set_variable('EFP TOTAL ENERGY', ene['total'])
core.set_variable('CURRENT ENERGY', ene['total'])
if do_gradient:
core.print_out(efpobj.gradient_summary())
torq = efpobj.get_gradient()
torq = core.Matrix.from_array(np.asarray(torq).reshape(-1, 6))
core.set_variable('EFP TORQUE', torq)
return ene['total']