"""
Datum Object Model
"""
from decimal import Decimal
from typing import Any, Dict, Optional
import numpy as np
from pydantic import BaseModel, validator
[docs]class Datum(BaseModel):
r"""Facilitates the storage of quantum chemical results by labeling them with basic metadata.
Attributes
----------
label : str
Official label for `data`, often qcvar. May contain spaces.
units : str
ASCII, LaTeX-like representation of units, without square brackets.
data : float or decimal.Decimal or numpy.ndarray
Value for `label`.
comment : str
Additional notes.
doi : str
Literature citation or definition DOI link.
glossary : str
Extended description or definition.
numeric : bool
Whether `data` is numeric. Pass `True` to disable validating `data` as float/Decimal/np.ndarray.
"""
numeric: bool
label: str
units: str
data: Any
comment: str = ""
doi: Optional[str] = None
glossary: str = ""
class Config:
extra = "forbid"
allow_mutation = False
json_encoders = {np.ndarray: lambda v: v.flatten().tolist(), complex: lambda v: (v.real, v.imag)}
def __init__(self, label, units, data, *, comment=None, doi=None, glossary=None, numeric=True):
kwargs = {"label": label, "units": units, "data": data, "numeric": numeric}
if comment is not None:
kwargs["comment"] = comment
if doi is not None:
kwargs["doi"] = doi
if glossary is not None:
kwargs["glossary"] = glossary
super().__init__(**kwargs)
@validator("data")
def must_be_numerical(cls, v, values, **kwargs):
try:
1.0 * v
except TypeError:
try:
Decimal("1.0") * v
except TypeError:
if values["numeric"]:
raise ValueError(f"Datum data should be float, Decimal, or np.ndarray, not {type(v)}.")
else:
values["numeric"] = True
else:
values["numeric"] = True
return v
def __str__(self, label=""):
width = 40
text = ["-" * width, "{:^{width}}".format("Datum " + self.label, width=width)]
if label:
text.append("{:^{width}}".format(label, width=width))
text.append("-" * width)
text.append("Data: {}".format(self.data))
text.append("Units: [{}]".format(self.units))
text.append("doi: {}".format(self.doi))
text.append("Comment: {}".format(self.comment))
text.append("Glossary: {}".format(self.glossary))
text.append("-" * width)
return "\n".join(text)
def dict(self, *args, **kwargs):
return super().dict(*args, **{**kwargs, **{"exclude_unset": True}})
def to_units(self, units=None):
from .physical_constants import constants
to_unit = self.units if units is None else units
factor = constants.conversion_factor(self.units, to_unit)
if isinstance(self.data, Decimal):
return factor * float(self.data)
else:
return factor * self.data
def print_variables(qcvars: Dict[str, "Datum"]) -> str:
r"""Form a printable representation of qcvariables.
Parameters
----------
qcvars
Group of Datum objects to print.
Returns
-------
str
Printable string representation of label, data, and unit in Datum-s.
"""
text = ["\n Variable Map:", " ----------------------------------------------------------------------------"]
if len(qcvars) == 0:
text.append(" (none)")
return "\n".join(text)
largest_key = max(len(k) for k in qcvars) + 2 # for quotation marks
largest_characteristic = 8
for k, v in qcvars.items():
try:
exp = int(str(v.data).split("E")[1])
except IndexError:
pass
else:
largest_characteristic = max(exp, largest_characteristic)
for k, qca in sorted(qcvars.items()):
# if k != qca.lbl:
# raise ValidationError('Huh? {} != {}'.format(k, qca.label))
if isinstance(qca.data, np.ndarray):
data = np.array_str(qca.data, max_line_width=120, precision=8, suppress_small=True)
data = "\n".join(" " + ln for ln in data.splitlines())
text.append(
""" {:{keywidth}} => {:{width}} [{}]""".format(
'"' + k + '"', "", qca.units, keywidth=largest_key, width=largest_characteristic + 14
)
)
text.append(data)
elif isinstance(qca.data, Decimal):
text.append(
""" {:{keywidth}} => {:{width}} [{}]""".format(
'"' + k + '"', qca.data, qca.units, keywidth=largest_key, width=largest_characteristic + 14
)
)
elif not qca.numeric:
text.append(
""" {:{keywidth}} => {:>{width}} [{}]""".format(
'"' + k + '"', str(qca.data), qca.units, keywidth=largest_key, width=largest_characteristic + 14
)
)
else:
text.append(
""" {:{keywidth}} => {:{width}.{prec}f} [{}]""".format(
'"' + k + '"', qca.data, qca.units, keywidth=largest_key, width=largest_characteristic + 14, prec=12
)
)
text.append("")
return "\n".join(text)