Source code for qcelemental.models.types

from typing import Any, Dict

import numpy as np


class TypedArray(np.ndarray):
    @classmethod
    def __get_validators__(cls):
        yield cls.validate

    @classmethod
    def validate(cls, v):
        try:
            v = np.asarray(v, dtype=cls._dtype)
        except ValueError:
            raise ValueError("Could not cast {} to NumPy Array!".format(v))

        return v

    @classmethod
    def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None:
        dt = cls._dtype
        if dt is int or np.issubdtype(dt, np.integer):
            items = {"type": "number", "multipleOf": 1.0}
        elif dt is float or np.issubdtype(dt, np.floating):
            items = {"type": "number"}
        elif dt is str or np.issubdtype(dt, np.string_):
            items = {"type": "string"}
        elif dt is bool or np.issubdtype(dt, np.bool_):
            items = {"type": "boolean"}
        field_schema.update(type="array", items=items)


class ArrayMeta(type):
    def __getitem__(self, dtype):
        return type("Array", (TypedArray,), {"_dtype": dtype})


[docs]class Array(np.ndarray, metaclass=ArrayMeta): pass