#
# @BEGIN LICENSE
#
# Psi4: an open-source quantum chemistry software package
#
# Copyright (c) 2007-2021 The Psi4 Developers.
#
# The copyrights for code used from other parties are included in
# the corresponding files.
#
# This file is part of Psi4.
#
# Psi4 is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, version 3.
#
# Psi4 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with Psi4; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# @END LICENSE
#
import os
import re
import sys
import uuid
import warnings
from collections import Counter
from itertools import product
from pathlib import Path
from tempfile import NamedTemporaryFile
from typing import Any, Dict, Union
import numpy as np
import qcelemental as qcel
from psi4 import core
from psi4.driver import qcdb
from . import optproc
from .exceptions import TestComparisonError, ValidationError, UpgradeHelper
## Python basis helps
@staticmethod
def _pybuild_basis(mol,
key=None,
target=None,
fitrole='ORBITAL',
other=None,
puream=-1,
return_atomlist=False,
quiet=False):
if key == 'ORBITAL':
key = 'BASIS'
def _resolve_target(key, target):
"""Figure out exactly what basis set was intended by (key, target)
"""
horde = qcdb.libmintsbasisset.basishorde
if not target:
if not key:
key = 'BASIS'
target = core.get_global_option(key)
if target in horde:
return horde[target]
return target
# Figure out what exactly was meant by 'target'.
resolved_target = _resolve_target(key, target)
# resolved_target needs to be either a string or function for pyconstuct.
# if a string, they search for a gbs file with that name.
# if a function, it needs to apply a basis to each atom.
bs, basisdict = qcdb.BasisSet.pyconstruct(mol.to_dict(),
key,
resolved_target,
fitrole,
other,
return_dict=True,
return_atomlist=return_atomlist)
if return_atomlist:
atom_basis_list = []
for atbs in basisdict:
atommol = core.Molecule.from_dict(atbs['molecule'])
lmbs = core.BasisSet.construct_from_pydict(atommol, atbs, puream)
atom_basis_list.append(lmbs)
return atom_basis_list
if isinstance(resolved_target, str):
basisdict['name'] = basisdict['name'].split('/')[-1].replace('.gbs', '')
if callable(resolved_target):
basisdict['name'] = resolved_target.__name__.replace('basisspec_psi4_yo__', '').upper()
if not quiet:
core.print_out(basisdict['message'])
if 'ECP' in basisdict['message']:
core.print_out(' !!! WARNING: ECP capability is in beta. Please check occupations closely. !!!\n\n')
if basisdict['key'] is None:
basisdict['key'] = 'BASIS'
psibasis = core.BasisSet.construct_from_pydict(mol, basisdict, puream)
return psibasis
core.BasisSet.build = _pybuild_basis
## Python wavefunction helps
@staticmethod
def _core_wavefunction_build(mol, basis=None):
if basis is None:
basis = core.BasisSet.build(mol)
elif isinstance(basis, str):
basis = core.BasisSet.build(mol, "ORBITAL", basis)
wfn = core.Wavefunction(mol, basis)
# Set basis for density-fitted calculations to the zero basis...
# ...until the user explicitly provides a DF basis.
wfn.set_basisset("DF_BASIS_SCF", core.BasisSet.zero_ao_basis_set())
return wfn
core.Wavefunction.build = _core_wavefunction_build
def _core_wavefunction_get_scratch_filename(self, filenumber):
""" Given a wavefunction and a scratch file number, canonicalizes the name
so that files can be consistently written and read """
fname = os.path.split(os.path.abspath(core.get_writer_file_prefix(self.molecule().name())))[1]
psi_scratch = core.IOManager.shared_object().get_default_path()
return os.path.join(psi_scratch, fname + '.' + str(filenumber))
core.Wavefunction.get_scratch_filename = _core_wavefunction_get_scratch_filename
@staticmethod
def _core_wavefunction_from_file(wfn_data: Union[str, Dict, Path]) -> core.Wavefunction:
r"""Build Wavefunction from data.
Parameters
----------
wfn_data
If a dict, use data directly. Otherwise, path-like passed to :py:func:`numpy.load`
to read from disk.
Returns
-------
Wavefunction
A deserialized Wavefunction object
"""
# load the wavefunction from file
if isinstance(wfn_data, dict):
pass
elif isinstance(wfn_data, str):
if not wfn_data.endswith(".npy"):
wfn_data = wfn_data + ".npy"
wfn_data = np.load(wfn_data, allow_pickle=True).item()
else:
# Could be path-like or file-like, let `np.load` handle it
wfn_data = np.load(wfn_data, allow_pickle=True).item()
# variable type specific dictionaries to be passed into C++ constructor
wfn_matrix = wfn_data['matrix']
wfn_vector = wfn_data['vector']
wfn_dimension = wfn_data['dimension']
wfn_int = wfn_data['int']
wfn_string = wfn_data['string']
wfn_boolean = wfn_data['boolean']
wfn_float = wfn_data['float']
wfn_floatvar = wfn_data['floatvar']
wfn_matrixarr = wfn_data['matrixarr']
# reconstruct molecule from dictionary representation
wfn_molecule = wfn_data['molecule']
molecule = core.Molecule.from_dict(wfn_molecule)
# get basis set name and spherical harmonics boolean
basis_name = wfn_string['basisname']
if ".gbs" in basis_name:
basis_name = basis_name.split('/')[-1].replace('.gbs', '')
basis_puream = wfn_boolean['basispuream']
basisset = core.BasisSet.build(molecule, 'ORBITAL', basis_name, puream=basis_puream)
# change some variables to psi4 specific data types (Matrix, Vector, Dimension)
for label in wfn_matrix:
array = wfn_matrix[label]
wfn_matrix[label] = core.Matrix.from_array(array, name=label) if array is not None else None
for label in wfn_vector:
array = wfn_vector[label]
wfn_vector[label] = core.Vector.from_array(array, name=label) if array is not None else None
for label in wfn_dimension:
tup = wfn_dimension[label]
wfn_dimension[label] = core.Dimension.from_list(tup, name=label) if tup is not None else None
for label in wfn_matrixarr:
array = wfn_matrixarr[label]
wfn_matrixarr[label] = core.Matrix.from_array(array, name=label) if array is not None else None
# make the wavefunction
wfn = core.Wavefunction(molecule, basisset, wfn_matrix, wfn_vector, wfn_dimension, wfn_int, wfn_string,
wfn_boolean, wfn_float)
# some of the wavefunction's variables can be changed directly
for k, v in wfn_floatvar.items():
wfn.set_variable(k, v)
for k, v in wfn_matrixarr.items():
wfn.set_variable(k, v)
return wfn
core.Wavefunction.from_file = _core_wavefunction_from_file
def _core_wavefunction_to_file(wfn: core.Wavefunction, filename: str = None) -> Dict:
"""Converts a Wavefunction object to a base class
Parameters
----------
wfn
A Wavefunction or inherited class
filename
An optional filename to write the data to
Returns
-------
dict
A dictionary and NumPy representation of the Wavefunction.
"""
# collect the wavefunction's variables in a dictionary indexed by varaible type
# some of the data types have to be made numpy-friendly first
if wfn.basisset().name().startswith("anonymous"):
raise ValidationError("Cannot serialize wavefunction with custom basissets.")
wfn_data = {
'molecule': wfn.molecule().to_dict(),
'matrix': {
'Ca': wfn.Ca().to_array() if wfn.Ca() else None,
'Cb': wfn.Cb().to_array() if wfn.Cb() else None,
'Da': wfn.Da().to_array() if wfn.Da() else None,
'Db': wfn.Db().to_array() if wfn.Db() else None,
'Fa': wfn.Fa().to_array() if wfn.Fa() else None,
'Fb': wfn.Fb().to_array() if wfn.Fb() else None,
'H': wfn.H().to_array() if wfn.H() else None,
'S': wfn.S().to_array() if wfn.S() else None,
'X': wfn.lagrangian().to_array() if wfn.lagrangian() else None,
'aotoso': wfn.aotoso().to_array() if wfn.aotoso() else None,
'gradient': wfn.gradient().to_array() if wfn.gradient() else None,
'hessian': wfn.hessian().to_array() if wfn.hessian() else None
},
'vector': {
'epsilon_a': wfn.epsilon_a().to_array() if wfn.epsilon_a() else None,
'epsilon_b': wfn.epsilon_b().to_array() if wfn.epsilon_b() else None,
'frequencies': wfn.frequencies().to_array() if wfn.frequencies() else None
},
'dimension': {
'doccpi': wfn.doccpi().to_tuple(),
'frzcpi': wfn.frzcpi().to_tuple(),
'frzvpi': wfn.frzvpi().to_tuple(),
'nalphapi': wfn.nalphapi().to_tuple(),
'nbetapi': wfn.nbetapi().to_tuple(),
'nmopi': wfn.nmopi().to_tuple(),
'nsopi': wfn.nsopi().to_tuple(),
'soccpi': wfn.soccpi().to_tuple()
},
'int': {
'nalpha': wfn.nalpha(),
'nbeta': wfn.nbeta(),
'nfrzc': wfn.nfrzc(),
'nirrep': wfn.nirrep(),
'nmo': wfn.nmo(),
'nso': wfn.nso(),
'print': wfn.get_print(),
},
'string': {
'name': wfn.name(),
'module': wfn.module(),
'basisname': wfn.basisset().name()
},
'boolean': {
'PCM_enabled': wfn.PCM_enabled(),
'same_a_b_dens': wfn.same_a_b_dens(),
'same_a_b_orbs': wfn.same_a_b_orbs(),
'density_fitted': wfn.density_fitted(),
'basispuream': wfn.basisset().has_puream()
},
'float': {
'energy': wfn.energy(),
'efzc': wfn.efzc(),
'dipole_field_x': wfn.get_dipole_field_strength()[0],
'dipole_field_y': wfn.get_dipole_field_strength()[1],
'dipole_field_z': wfn.get_dipole_field_strength()[2]
},
'floatvar': wfn.scalar_variables(),
'matrixarr': {k: v.to_array() for k, v in wfn.array_variables().items()}
} # yapf: disable
if filename is not None:
if not filename.endswith('.npy'): filename += '.npy'
np.save(filename, wfn_data, allow_pickle=True)
return wfn_data
core.Wavefunction.to_file = _core_wavefunction_to_file
## Python JK helps
@staticmethod
def _core_jk_build(orbital_basis: core.BasisSet, aux: core.BasisSet = None, jk_type: str = None, do_wK: bool = None, memory: int = None) -> core.JK:
"""
Constructs a Psi4 JK object from an input basis.
Parameters
----------
orbital_basis
Orbital basis to use in the JK object.
aux
Optional auxiliary basis set for density-fitted tensors. Defaults
to the DF_BASIS_SCF if set, otherwise the correspond JKFIT basis
to the passed in `orbital_basis`.
jk_type
Type of JK object to build (DF, Direct, PK, etc). Defaults to the
current global SCF_TYPE option.
Returns
-------
JK
Uninitialized JK object.
Example
-------
jk = psi4.core.JK.build(bas)
jk.set_memory(int(5e8)) # 4GB of memory
jk.initialize()
...
jk.C_left_add(matirx)
jk.compute()
jk.C_clear()
...
"""
optstash = optproc.OptionsState(["SCF_TYPE"])
if jk_type is not None:
core.set_global_option("SCF_TYPE", jk_type)
if aux is None:
if core.get_global_option("SCF_TYPE") == "DF":
aux = core.BasisSet.build(orbital_basis.molecule(), "DF_BASIS_SCF", core.get_option("SCF", "DF_BASIS_SCF"),
"JKFIT", orbital_basis.name(), orbital_basis.has_puream())
else:
aux = core.BasisSet.zero_ao_basis_set()
if (do_wK is None) or (memory is None):
jk = core.JK.build_JK(orbital_basis, aux)
else:
jk = core.JK.build_JK(orbital_basis, aux, bool(do_wK), int(memory))
optstash.restore()
return jk
core.JK.build = _core_jk_build
## Grid Helpers
def _core_vbase_get_np_xyzw(Vpot):
"""
Returns the x, y, z, and weights of a grid as a tuple of NumPy array objects.
"""
x_list = []
y_list = []
z_list = []
w_list = []
# Loop over every block in the potenital
for b in range(Vpot.nblocks()):
# Obtain the block
block = Vpot.get_block(b)
# Obtain the x, y, and z coordinates along with the weight
x_list.append(block.x())
y_list.append(block.y())
z_list.append(block.z())
w_list.append(block.w())
x = np.hstack(x_list)
y = np.hstack(y_list)
z = np.hstack(z_list)
w = np.hstack(w_list)
return (x, y, z, w)
core.VBase.get_np_xyzw = _core_vbase_get_np_xyzw
## Python other helps
[docs]def set_options(options_dict: Dict[str, Any], verbose: int = 1) -> None:
"""Sets Psi4 options from an input dictionary.
Parameters
----------
options_dict
Dictionary where keys are "option_name" for global options or
"module_name__option_name" (double underscore separation) for
option local to "module_name". Values are the option value. All
are case insensitive.
verbose
Control print volume.
"""
optionre = re.compile(r'\A(?P<module>\w+__)?(?P<option>\w+)\Z', re.IGNORECASE)
rejected = {}
for k, v, in options_dict.items():
mobj = optionre.match(k.strip())
module = mobj.group('module').upper()[:-2] if mobj.group('module') else None
option = mobj.group('option').upper()
if module:
if ((module, option, v) not in [('SCF', 'GUESS', 'READ')]) and ((module, option) not in [('PCM', 'INPUT')]):
# TODO guess/read exception is for distributed driver. should be handled differently.
try:
core.set_local_option(module, option, v)
except RuntimeError as err:
rejected[k] = (v, err)
if verbose > 1:
print('Setting: core.set_local_option', module, option, v)
if (module, option) == ("PCM", "INPUT"):
pcm_helper(v)
else:
try:
core.set_global_option(option, v)
except RuntimeError as err:
rejected[k] = (v, err)
if verbose > 1:
print('Setting: core.set_global_option', option, v)
if rejected:
raise ValidationError(f'Error setting options: {rejected}')
# TODO could subclass ValidationError and append rejected so that run_json could handle remanants.
[docs]def set_module_options(module: str, options_dict: Dict[str, Any]) -> None:
"""
Sets Psi4 module options from a module specification and input dictionary.
"""
warnings.warn(
"Using `psi4.set_module_options(<module>, {<key>: <val>})` instead of `psi4.set_options({<module>__<key>: <val>})` is deprecated, and in 1.5 it will stop working\n",
category=FutureWarning,
stacklevel=2)
for k, v, in options_dict.items():
core.set_local_option(module.upper(), k.upper(), v)
## OEProp helpers
[docs]def pcm_helper(block: str):
"""
Passes multiline string *block* to PCMSolver parser.
Parameters
----------
block
multiline string with PCM input in PCMSolver syntax.
"""
import pcmsolver
with NamedTemporaryFile(mode="w+t", delete=True) as fl:
fl.write(block)
fl.flush()
parsed_pcm = pcmsolver.parse_pcm_input(fl.name)
with NamedTemporaryFile(mode="w+t", delete=False) as fl:
fl.write(parsed_pcm)
core.set_local_option("PCM", "PCMSOLVER_PARSED_FNAME", fl.name)
def basname(name):
"""Imitates BasisSet.make_filename() without the gbs extension"""
return name.lower().replace('+', 'p').replace('*', 's').replace('(', '_').replace(')', '_').replace(',', '_')
[docs]def temp_circular_import_blocker():
pass
[docs]def basis_helper(block, name='', key='BASIS', set_option=True):
"""For PsiAPI mode, forms a basis specification function from *block*
and associates it with keyword *key* under handle *name*. Registers
the basis spec with Psi4 so that it can be applied again to future
molecules. For usage, see mints2, mints9, and cc54 test cases. Unless
*set_option* is False, *name* will be set as current active *key*,
equivalent to `set key name` or `set_option({key: name})`.
"""
key = key.upper()
name = ('anonymous' + str(uuid.uuid4())[:8]) if name == '' else name
cleanbas = basname(name).replace('-', '') # further remove hyphens so can be function name
block = qcel.util.filter_comments(block)
command_lines = re.split('\n', block)
symbol_re = re.compile(r'^\s*assign\s+(?P<symbol>[A-Z]{1,3})\s+(?P<basis>[-+*\(\)\w]+)\s*$', re.IGNORECASE)
label_re = re.compile(
r'^\s*assign\s+(?P<label>(?P<symbol>[A-Z]{1,3})(?:(_\w+)|(\d+))?)\s+(?P<basis>[-+*\(\)\w]+)\s*$',
re.IGNORECASE)
all_re = re.compile(r'^\s*assign\s+(?P<basis>[-+*\(\)\w]+)\s*$', re.IGNORECASE)
basislabel = re.compile(r'\s*\[\s*([-*\(\)\w]+)\s*\]\s*')
def anon(mol, role):
basstrings = {}
# Start by looking for assign lines, and remove them
leftover_lines = []
assignments = False
for line in command_lines:
if symbol_re.match(line):
m = symbol_re.match(line)
mol.set_basis_by_symbol(m.group('symbol'), m.group('basis'), role=role)
assignments = True
elif label_re.match(line):
m = label_re.match(line)
mol.set_basis_by_label(m.group('label'), m.group('basis'), role=role)
assignments = True
elif all_re.match(line):
m = all_re.match(line)
mol.set_basis_all_atoms(m.group('basis'), role=role)
assignments = True
else:
# Ignore blank lines and accumulate remainder
if line and not line.isspace():
leftover_lines.append(line.strip())
# Now look for regular basis set definitions
basblock = list(filter(None, basislabel.split('\n'.join(leftover_lines))))
if len(basblock) == 1:
if not assignments:
# case with no [basname] markers where whole block is contents of gbs file
mol.set_basis_all_atoms(name, role=role)
basstrings[basname(name)] = basblock[0]
else:
message = (
"Conflicting basis set specification: assign lines present but shells have no [basname] label."
"")
raise TestComparisonError(message)
else:
# case with specs separated by [basname] markers
for idx in range(0, len(basblock), 2):
basstrings[basname(basblock[idx])] = basblock[idx + 1]
return basstrings
anon.__name__ = 'basisspec_psi4_yo__' + cleanbas
qcdb.libmintsbasisset.basishorde[name.upper()] = anon
if set_option:
core.set_global_option(key, name)
core.OEProp.valid_methods = [
'DIPOLE', 'QUADRUPOLE', 'MULLIKEN_CHARGES', 'LOWDIN_CHARGES', 'WIBERG_LOWDIN_INDICES', 'MAYER_INDICES',
'MBIS_CHARGES', 'MO_EXTENTS', 'GRID_FIELD', 'GRID_ESP', 'ESP_AT_NUCLEI', 'NO_OCCUPATIONS'
]
## Option helpers
def _core_set_global_option_python(key, EXTERN):
"""
This is a fairly hacky way to get around EXTERN issues. Effectively we are routing this option Python side through attributes until the general Options overhaul.
"""
if (key != "EXTERN"):
raise ValidationError("Options: set_global_option_python does not recognize keyword %s" % key)
if EXTERN is None:
core.EXTERN = None
core.set_global_option("EXTERN", False)
elif isinstance(EXTERN, core.ExternalPotential):
# Well this is probably the worst hack I have done, thats saying something
core.EXTERN = EXTERN
core.set_global_option("EXTERN", True)
else:
raise ValidationError("Options: set_global_option_python can either be a NULL or External Potential object")
core.set_global_option_python = _core_set_global_option_python
## QCvar helps
_qcvar_transitions = {
"SCSN-MP2 CORRELATION ENERGY": "SCS(N)-MP2 CORRELATION ENERGY",
"SCSN-MP2 TOTAL ENERGY": "SCS(N)-MP2 TOTAL ENERGY",
"MAYER_INDICES": "MAYER INDICES",
"WIBERG_LOWDIN_INDICES": "WIBERG LOWDIN INDICES",
"LOWDIN_CHARGES": "LOWDIN CHARGES",
"MULLIKEN_CHARGES": "MULLIKEN CHARGES",
"(AT) CORRECTION ENERGY": "A-(T) CORRECTION ENERGY",
"CCSD(AT) TOTAL ENERGY": "A-CCSD(T) TOTAL ENERGY",
"CCSD(AT) CORRELATION ENERGY": "A-CCSD(T) CORRELATION ENERGY",
}
_qcvar_cancellations = {
"SCSN-MP2 SAME-SPIN CORRELATION ENERGY": ["MP2 SAME-SPIN CORRELATION ENERGY"],
"SCSN-MP2 OPPOSITE-SPIN CORRELATION ENERGY": ["MP2 OPPOSITE-SPIN CORRELATION ENERGY"],
"SCS-CCSD SAME-SPIN CORRELATION ENERGY": ["CCSD SAME-SPIN CORRELATION ENERGY"],
"SCS-CCSD OPPOSITE-SPIN CORRELATION ENERGY": ["CCSD OPPOSITE-SPIN CORRELATION ENERGY"],
"SCS-MP2 SAME-SPIN CORRELATION ENERGY": ["MP2 SAME-SPIN CORRELATION ENERGY"],
"SCS-MP2 OPPOSITE-SPIN CORRELATION ENERGY": ["MP2 OPPOSITE-SPIN CORRELATION ENERGY"],
"SCS(N)-OMP2 CORRELATION ENERGY": ["OMP2 SAME-SPIN CORRELATION ENERGY", "OMP2 OPPOSITE-SPIN CORRELATION ENERGY"],
"SCS(N)-OMP2 TOTAL ENERGY": ["OMP2 SAME-SPIN CORRELATION ENERGY", "OMP2 OPPOSITE-SPIN CORRELATION ENERGY"],
"SCSN-OMP2 CORRELATION ENERGY": ["OMP2 SAME-SPIN CORRELATION ENERGY", "OMP2 OPPOSITE-SPIN CORRELATION ENERGY"],
"SCSN-OMP2 TOTAL ENERGY": ["OMP2 SAME-SPIN CORRELATION ENERGY", "OMP2 OPPOSITE-SPIN CORRELATION ENERGY"],
}
def _qcvar_warnings(key: str) -> str:
if any([key.upper().endswith(" DIPOLE " + cart) for cart in ["X", "Y", "Z"]]):
warnings.warn(
f"Using scalar QCVariable `{key.upper()}` [D] instead of array `{key.upper()[:-2]}` [e a0] is deprecated, and in 1.5 it will stop working\n",
category=FutureWarning,
stacklevel=3)
if any([key.upper().endswith(" QUADRUPOLE " + cart) for cart in ["XX", "YY", "ZZ", "XY", "XZ", "YZ"]]):
warnings.warn(
f"Using scalar QCVariable `{key.upper()}` [D A] instead of array `{key.upper()[:-3]}` [e a0^2] is deprecated, and in 1.5 it will stop working\n",
category=FutureWarning,
stacklevel=3)
if key.upper() in _qcvar_transitions:
warnings.warn(
f"Using QCVariable `{key.upper()}` instead of `{_qcvar_transitions[key.upper()]}` is deprecated, and in 1.5 it will stop working\n",
category=FutureWarning,
stacklevel=3)
return _qcvar_transitions[key.upper()]
if key.upper() in _qcvar_cancellations:
raise UpgradeHelper(key.upper(), "no direct replacement", 1.4, " Consult QCVariables " + ", ".join(_qcvar_cancellations[key.upper()]) + " to recompose the quantity.")
return key
_multipole_order = ["dummy", "dummy", "QUADRUPOLE", "OCTUPOLE", "HEXADECAPOLE"]
for order in range(5, 10):
_multipole_order.append(f"{int(2**order)}-POLE")
def _qcvar_reshape_set(key, val):
"""Reverse `_qcvar_reshape_get` for internal psi4.core.Matrix storage."""
reshaper = None
if key.upper().startswith("MBIS"):
if key.upper().endswith("CHARGES"):
return val
elif key.upper().endswith("DIPOLES"):
reshaper = (-1, 3)
return val.reshape(reshaper)
elif key.upper().endswith("QUADRUPOLES"):
val = val.reshape(-1, 3, 3)
val = np.array([_multipole_compressor(val[iat], 2) for iat in range(len(val))])
return val
elif key.upper().endswith("OCTUPOLES"):
val = val.reshape(-1, 3, 3, 3)
val = np.array([_multipole_compressor(val[iat], 3) for iat in range(len(val))])
return val
elif key.upper().endswith("DIPOLE"):
reshaper = (1, 3)
elif any(key.upper().endswith(p) for p in _multipole_order):
val = _multipole_compressor(val, _multipole_order.index(key.upper().split()[-1]))
reshaper = (1, -1)
elif key.upper() in ["MULLIKEN_CHARGES", "LOWDIN_CHARGES", "MULLIKEN CHARGES", "LOWDIN CHARGES"]:
reshaper = (1, -1)
if reshaper:
return val.reshape(reshaper)
else:
return val
def _qcvar_reshape_get(key, val):
"""For QCVariables where the 2D psi4.core.Matrix shape is unnatural, convert to natural shape in ndarray."""
reshaper = None
if key.upper().startswith("MBIS"):
if key.upper().endswith("CHARGES"):
return val.np
elif key.upper().endswith("DIPOLES"):
reshaper = (-1, 3)
return val.np.reshape(reshaper)
elif key.upper().endswith("QUADRUPOLES"):
val = val.np.reshape(-1, 6)
val = np.array([_multipole_plumper(val[iat], 2) for iat in range(len(val))])
return val
elif key.upper().endswith("OCTUPOLES"):
val = val.np.reshape(-1, 10)
val = np.array([_multipole_plumper(val[iat], 3) for iat in range(len(val))])
return val
elif key.upper().endswith("DIPOLE"):
reshaper = (3, )
elif any(key.upper().endswith(p) for p in _multipole_order):
return _multipole_plumper(val.np.reshape((-1, )), _multipole_order.index(key.upper().split()[-1]))
elif key.upper() in ["MULLIKEN_CHARGES", "LOWDIN_CHARGES", "MULLIKEN CHARGES", "LOWDIN CHARGES"]:
reshaper = (-1, )
if reshaper:
return val.np.reshape(reshaper)
else:
return val
def _multipole_compressor(complete, order):
"""Form flat unique components multipole array from complete Cartesian array.
Parameters
----------
order : int
Multipole order. e.g., 1 for dipole, 4 for hexadecapole.
complete : ndarray
Multipole array, order-dimensional Cartesian array expanded to complete components.
Returns
-------
compressed : ndarray
Multipole array, length (order + 1) * (order + 2) / 2 compressed to unique components.
"""
compressed = []
for ii in range(order + 1):
lx = order - ii
for lz in range(ii + 1):
ly = ii - lz
np_index = []
for xval in range(lx):
np_index.append(0)
for yval in range(ly):
np_index.append(1)
for zval in range(lz):
np_index.append(2)
compressed.append(complete[tuple(np_index)])
assert len(compressed) == ((order + 1) * (order + 2) / 2)
return np.array(compressed)
def _multipole_plumper(compressed: np.ndarray, order: int) -> np.ndarray:
"""Form multidimensional multipole array from unique components array.
Parameters
----------
order
Multipole order. e.g., 1 for dipole, 4 for hexadecapole.
compressed
Multipole array, length (order + 1) * (order + 2) / 2 compressed to unique components.
Returns
-------
complete : numpy.ndarray
Multipole array, order-dimensional Cartesian array expanded to complete components.
"""
shape = tuple([3] * order)
complete = np.zeros(shape)
def compound_index(counter):
# thanks, https://www.pamoc.it/tpc_cart_mom.html Eqn 2.2!
# jn = nz + (ny + nz)(ny + nz + 1) / 2
return int(
counter.get("2", 0) + (counter.get("1", 0) + counter.get("2", 0)) *
(counter.get("1", 0) + counter.get("2", 0) + 1) / 2)
for idx in product("012", repeat=order):
xyz_counts = Counter(idx) # "010" --> {"0": 2, "1": 1}
np_index = tuple(int(x) for x in idx) # ('0', '1') --> (0, 1)
complete[np_index] = compressed[compound_index(xyz_counts)]
return complete
def _core_has_variable(key: str) -> bool:
"""Whether scalar or array QCVariable *key* has been set in global memory."""
return core.has_scalar_variable(key) or core.has_array_variable(key)
def _core_wavefunction_has_variable(cls: core.Wavefunction, key: str) -> bool:
"""Whether scalar or array QCVariable *key* has been set on *self* :class:`psi4.core.Wavefunction`."""
return cls.has_scalar_variable(key) or cls.has_array_variable(key)
def _core_variable(key: str) -> Union[float, core.Matrix, np.ndarray]:
"""Return copy of scalar or array QCVariable *key* from global memory.
Returns
-------
float or numpy.ndarray or Matrix
Scalar variables are returned as floats.
Array variables not naturally 2D (like multipoles) are returned as :class:`numpy.ndarray` of natural dimensionality.
Other array variables are returned as :py:class:`~psi4.core.Matrix` and may have an extra dimension with symmetry information.
Example
-------
>>> psi4.gradient("hf/cc-pvdz")
>>> psi4.variable("CURRENT ENERGY")
-100.00985995185668
>>> psi4.variable("CURRENT DIPOLE")
array([ 0. , 0. , -0.83217802])
>>> psi4.variable("CURRENT GRADIENT")
<psi4.core.Matrix object at 0x12d884fc0>
>>> psi4.variable("CURRENT GRADIENT").np
array([[ 6.16297582e-33, 6.16297582e-33, -9.41037138e-02],
[-6.16297582e-33, -6.16297582e-33, 9.41037138e-02]])
"""
key = _qcvar_warnings(key)
if core.has_scalar_variable(key):
return core.scalar_variable(key)
elif core.has_array_variable(key):
return _qcvar_reshape_get(key, core.array_variable(key))
else:
raise KeyError("psi4.core.variable: Requested variable " + key + " was not set!\n")
def _core_wavefunction_variable(cls: core.Wavefunction, key: str) -> Union[float, core.Matrix, np.ndarray]:
"""Return copy of scalar or array QCVariable *key* from *self* :class:`psi4.core.Wavefunction`.
Returns
-------
float or numpy.ndarray or Matrix
Scalar variables are returned as floats.
Array variables not naturally 2D (like multipoles) are returned as :class:`numpy.ndarray` of natural dimensionality.
Other array variables are returned as :py:class:`~psi4.core.Matrix` and may have an extra dimension with symmetry information.
Example
-------
>>> g, wfn = psi4.gradient("hf/cc-pvdz", return_wfn=True)
>>> wfn.variable("CURRENT ENERGY")
-100.00985995185668
>>> wfn.variable("CURRENT DIPOLE")
array([ 0. , 0. , -0.83217802])
>>> wfn.variable("CURRENT GRADIENT")
<psi4.core.Matrix object at 0x12d884fc0>
>>> wfn.variable("CURRENT GRADIENT").np
array([[ 6.16297582e-33, 6.16297582e-33, -9.41037138e-02],
[-6.16297582e-33, -6.16297582e-33, 9.41037138e-02]])
"""
key = _qcvar_warnings(key)
if cls.has_scalar_variable(key):
return cls.scalar_variable(key)
elif cls.has_array_variable(key):
return _qcvar_reshape_get(key, cls.array_variable(key))
else:
raise KeyError("psi4.core.Wavefunction.variable: Requested variable " + key + " was not set!\n")
def _core_set_variable(key: str, val: Union[core.Matrix, np.ndarray, float]) -> None:
"""Sets scalar or array QCVariable *key* to *val* in global memory."""
if isinstance(val, core.Matrix):
if core.has_scalar_variable(key):
raise ValidationError("psi4.core.set_variable: Target variable " + key + " already a scalar variable!")
else:
core.set_array_variable(key, val)
elif isinstance(val, np.ndarray):
if core.has_scalar_variable(key):
raise ValidationError("psi4.core.set_variable: Target variable " + key + " already a scalar variable!")
else:
core.set_array_variable(key, core.Matrix.from_array(_qcvar_reshape_set(key, val)))
else:
if core.has_array_variable(key):
raise ValidationError("psi4.core.set_variable: Target variable " + key + " already an array variable!")
else:
core.set_scalar_variable(key, val)
# TODO _qcvar_warnings(key)
def _core_wavefunction_set_variable(cls: core.Wavefunction, key: str, val: Union[core.Matrix, np.ndarray, float]) -> None:
"""Sets scalar or array QCVariable *key* to *val* on *cls*."""
if isinstance(val, core.Matrix):
if cls.has_scalar_variable(key):
raise ValidationError("psi4.core.Wavefunction.set_variable: Target variable " + key +
" already a scalar variable!")
else:
cls.set_array_variable(key, val)
elif isinstance(val, np.ndarray):
if cls.has_scalar_variable(key):
raise ValidationError("psi4.core.Wavefunction.set_variable: Target variable " + key +
" already a scalar variable!")
else:
cls.set_array_variable(key, core.Matrix.from_array(_qcvar_reshape_set(key, val)))
else:
if cls.has_array_variable(key):
raise ValidationError("psi4.core.Wavefunction.set_variable: Target variable " + key +
" already an array variable!")
else:
cls.set_scalar_variable(key, val)
# TODO _qcvar_warnings(key)
def _core_del_variable(key: str) -> None:
"""Removes scalar or array QCVariable *key* from global memory if present."""
if core.has_scalar_variable(key):
core.del_scalar_variable(key)
elif core.has_array_variable(key):
core.del_array_variable(key)
def _core_wavefunction_del_variable(cls: core.Wavefunction, key: str) -> None:
"""Removes scalar or array QCVariable *key* from *cls* if present."""
if cls.has_scalar_variable(key):
cls.del_scalar_variable(key)
elif cls.has_array_variable(key):
cls.del_array_variable(key)
def _core_variables(include_deprecated_keys: bool = False) -> Dict[str, Union[float, core.Matrix, np.ndarray]]:
"""Return all scalar or array QCVariables from global memory."""
dicary = {**core.scalar_variables(), **{k: _qcvar_reshape_get(k, v) for k, v in core.array_variables().items()}}
if include_deprecated_keys:
for old_key, current_key in _qcvar_transitions.items():
if current_key in dicary:
dicary[old_key] = dicary[current_key]
return dicary
def _core_wavefunction_variables(cls, include_deprecated_keys: bool = False) -> Dict[str, Union[float, core.Matrix, np.ndarray]]:
"""Return all scalar or array QCVariables from *cls*."""
dicary = {**cls.scalar_variables(), **{k: _qcvar_reshape_get(k, v) for k, v in cls.array_variables().items()}}
if include_deprecated_keys:
for old_key, current_key in _qcvar_transitions.items():
if current_key in dicary:
dicary[old_key] = dicary[current_key]
return dicary
core.has_variable = _core_has_variable
core.variable = _core_variable
core.set_variable = _core_set_variable
core.del_variable = _core_del_variable
core.variables = _core_variables
core.Wavefunction.has_variable = _core_wavefunction_has_variable
core.Wavefunction.variable = _core_wavefunction_variable
core.Wavefunction.set_variable = _core_wavefunction_set_variable
core.Wavefunction.del_variable = _core_wavefunction_del_variable
core.Wavefunction.variables = _core_wavefunction_variables
## Psi4 v1.4 Export Deprecations
def _core_get_variable(key):
"""
.. deprecated:: 1.4
Use :py:func:`psi4.variable` instead.
"""
warnings.warn(
"Using `psi4.core.get_variable` instead of `psi4.core.variable` (or `psi4.core.scalar_variable` for scalar variables only) is deprecated, and in 1.4 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return core.scalar_variable(key)
def _core_get_variables():
"""
.. deprecated:: 1.4
Use :py:func:`psi4.core.variables` instead.
"""
warnings.warn(
"Using `psi4.core.get_variables` instead of `psi4.core.variables` (or `psi4.core.scalar_variables` for scalar variables only) is deprecated, and in 1.4 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return core.scalar_variables()
def _core_get_array_variable(key):
"""
.. deprecated:: 1.4
Use :py:func:`psi4.variable` instead.
"""
warnings.warn(
"Using `psi4.core.get_array_variable` instead of `psi4.core.variable` (or `psi4.core.array_variable` for array variables only) is deprecated, and in 1.4 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return core.array_variable(key)
def _core_get_array_variables():
"""
.. deprecated:: 1.4
Use :py:func:`psi4.core.variables` instead.
"""
warnings.warn(
"Using `psi4.core.get_array_variables` instead of `psi4.core.variables` (or `psi4.core.array_variables` for array variables only) is deprecated, and in 1.4 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return core.array_variables()
core.get_variable = _core_get_variable
core.get_variables = _core_get_variables
core.get_array_variable = _core_get_array_variable
core.get_array_variables = _core_get_array_variables
def _core_wavefunction_get_variable(cls, key):
"""
.. deprecated:: 1.4
Use :py:func:`psi4.core.Wavefunction.variable` instead.
"""
warnings.warn(
"Using `psi4.core.Wavefunction.get_variable` instead of `psi4.core.Wavefunction.variable` (or `psi4.core.Wavefunction.scalar_variable` for scalar variables only) is deprecated, and in 1.4 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return cls.scalar_variable(key)
def _core_wavefunction_get_array(cls, key):
"""
.. deprecated:: 1.4
Use :py:func:`psi4.core.Wavefunction.variable` instead.
"""
warnings.warn(
"Using `psi4.core.Wavefunction.get_array` instead of `psi4.core.Wavefunction.variable` (or `psi4.core.Wavefunction.array_variable` for array variables only) is deprecated, and in 1.4 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return cls.array_variable(key)
def _core_wavefunction_set_array(cls, key, val):
"""
.. deprecated:: 1.4
Use :py:func:`psi4.core.Wavefunction.set_variable` instead.
"""
warnings.warn(
"Using `psi4.core.Wavefunction.set_array` instead of `psi4.core.Wavefunction.set_variable` (or `psi4.core.Wavefunction.set_array_variable` for array variables only) is deprecated, and in 1.4 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return cls.set_array_variable(key, val)
def _core_wavefunction_arrays(cls):
"""
.. deprecated:: 1.4
Use :py:func:`psi4.core.Wavefunction.variables` instead.
"""
warnings.warn(
"Using `psi4.core.Wavefunction.arrays` instead of `psi4.core.Wavefunction.variables` (or `psi4.core.Wavefunction.array_variables` for array variables only) is deprecated, and in 1.4 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return cls.array_variables()
core.Wavefunction.get_variable = _core_wavefunction_get_variable
core.Wavefunction.get_array = _core_wavefunction_get_array
core.Wavefunction.set_array = _core_wavefunction_set_array
core.Wavefunction.arrays = _core_wavefunction_arrays
def _core_wavefunction_frequencies(cls):
if not hasattr(cls, 'frequency_analysis'):
return None
vibinfo = cls.frequency_analysis
vibonly = qcdb.vib.filter_nonvib(vibinfo)
return core.Vector.from_array(qcdb.vib.filter_omega_to_real(vibonly['omega'].data))
def _core_wavefunction_legacy_frequencies(cls):
"""
.. deprecated:: 1.4
"""
warnings.warn(
"Using `psi4.core.Wavefunction.legacy_frequencies` (accessing c-side member data) is deprecated, and in 1.4 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return cls.legacy_frequencies()
def _core_wavefunction_set_frequencies(cls, val):
"""
.. deprecated:: 1.4
"""
warnings.warn(
"Using `psi4.core.Wavefunction.set_frequencies` (accessing c-side member data) instead of `psi4.core.Wavefunction.frequency_analysis` (py-side member data) is deprecated, and in 1.4 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return cls.set_legacy_frequencies(val)
core.Wavefunction.frequencies = _core_wavefunction_frequencies
core.Wavefunction.legacy_frequencies = _core_wavefunction_legacy_frequencies
core.Wavefunction.set_frequencies = _core_wavefunction_set_frequencies
def _core_wavefunction_X(cls):
warnings.warn(
"Using `psi4.core.Wavefunction.X` instead of `psi4.core.Wavefunction.lagrangian` is deprecated, and in 1.5 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return cls.lagrangian()
core.Wavefunction.X = _core_wavefunction_X
## Psi4 v1.3 Export Deprecations
def _core_get_gradient():
"""
.. deprecated:: 1.2
"""
warnings.warn(
"Using `psi4.core.get_gradient` (only used internally for C++ optking; deprecated silently in 1.2) is deprecated, and in 1.5 (or whenever Py optking is adopted) it will stop working\n",
category=FutureWarning,
stacklevel=2)
return core.get_legacy_gradient()
def _core_set_gradient(val):
"""
.. deprecated:: 1.2
"""
warnings.warn(
"Using `psi4.core.set_gradient` (only used internally for C++ optking; deprecated silently in 1.2) is deprecated, and in 1.5 (or whenever Py optking is adopted) it will stop working\n",
category=FutureWarning,
stacklevel=2)
return core.set_legacy_gradient(val)
core.get_gradient = _core_get_gradient
core.set_gradient = _core_set_gradient
def _core_doublet(A, B, transA, transB):
"""Multiply two matrices together.
.. deprecated:: 1.4
Use :py:func:`psi4.core.doublet` instead.
"""
warnings.warn(
"Using `psi4.core.Matrix.doublet` instead of `psi4.core.doublet` is deprecated, and in 1.4 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return core.doublet(A, B, transA, transB)
def _core_triplet(A, B, C, transA, transB, transC):
"""Multiply three matrices together.
.. deprecated:: 1.4
Use :py:func:`psi4.core.triplet` instead.
"""
warnings.warn(
"Using `psi4.core.Matrix.triplet` instead of `psi4.core.triplet` is deprecated, and in 1.4 it will stop working\n",
category=FutureWarning,
stacklevel=2)
return core.triplet(A, B, C, transA, transB, transC)
core.Matrix.doublet = staticmethod(_core_doublet)
core.Matrix.triplet = staticmethod(_core_triplet)