Source code for psi4.driver.procrouting.proc_util

#
# @BEGIN LICENSE
#
# Psi4: an open-source quantum chemistry software package
#
# Copyright (c) 2007-2021 The Psi4 Developers.
#
# The copyrights for code used from other parties are included in
# the corresponding files.
#
# This file is part of Psi4.
#
# Psi4 is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, version 3.
#
# Psi4 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with Psi4; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# @END LICENSE
#
from typing import Tuple

import numpy as np

from qcelemental import constants

from psi4 import core
from psi4.driver import p4util
from psi4.driver.p4util.exceptions import *
from psi4.driver.procrouting.dft import functionals, build_superfunctional_from_dictionary
from psi4.driver.procrouting.sapt import fisapt_proc


def scf_set_reference_local(name, is_dft=False):
    """
    Figures out the correct SCF reference to set locally
    """

    optstash = p4util.OptionsState(['SCF_TYPE'], ['SCF', 'REFERENCE'])

    # Alter default algorithm
    if not core.has_global_option_changed('SCF_TYPE'):
        core.set_global_option('SCF_TYPE', 'DF')

    # Alter reference name if needed
    user_ref = core.get_option('SCF', 'REFERENCE')

    sup = build_superfunctional_from_dictionary(functionals[name], 1, 1, True)[0]
    if sup.needs_xc() or is_dft:
        if (user_ref == 'RHF'):
            core.set_local_option('SCF', 'REFERENCE', 'RKS')
        elif (user_ref == 'UHF'):
            core.set_local_option('SCF', 'REFERENCE', 'UKS')
        elif (user_ref == 'ROHF'):
            raise ValidationError('ROHF reference for DFT is not available.')
        elif (user_ref == 'CUHF'):
            raise ValidationError('CUHF reference for DFT is not available.')
    # else we are doing HF and nothing needs to be overloaded

    return optstash


def oeprop_validator(prop_list):
    """
    Validations a list of OEProp computations. Throws if not found

    """
    oeprop_methods = core.OEProp.valid_methods

    if not len(prop_list):
        raise ValidationError("OEProp: No properties specified!")

    for prop in prop_list:
        prop = prop.upper()

        if 'MULTIPOLE(' in prop: continue

        if prop not in oeprop_methods:
            alt_method_name = p4util.text.find_approximate_string_matches(prop, oeprop_methods, 2)
            alternatives = ""
            if len(alt_method_name) > 0:
                alternatives = " Did you mean? %s" % (" ".join(alt_method_name))

            raise ValidationError("OEProp: Feature '%s' is not recognized. %s" % (prop, alternatives))


[docs]def check_iwl_file_from_scf_type(scf_type, wfn): """ Ensures that a IWL file has been written based on input SCF type. """ if scf_type in ['DF', 'DISK_DF', 'MEM_DF', 'CD', 'PK', 'DIRECT']: mints = core.MintsHelper(wfn.basisset()) if core.get_global_option("RELATIVISTIC") in ["X2C", "DKH"]: rel_bas = core.BasisSet.build(wfn.molecule(), "BASIS_RELATIVISTIC", core.get_option("SCF", "BASIS_RELATIVISTIC"), "DECON", core.get_global_option('BASIS'), puream=wfn.basisset().has_puream()) mints.set_basisset('BASIS_RELATIVISTIC', rel_bas) mints.set_print(1) mints.integrals()
def check_non_symmetric_jk_density(name): """ Ensure non-symmetric density matrices are supported for the selected JK routine. """ scf_type = core.get_global_option('SCF_TYPE') supp_jk_type = ['DF', 'DISK_DF', 'MEM_DF', 'CD', 'PK', 'DIRECT', 'OUT_OF_CORE'] supp_string = ', '.join(supp_jk_type[:-1]) + ', or ' + supp_jk_type[-1] + '.' if scf_type not in supp_jk_type: raise ValidationError("Method %s: Requires support for non-symmetric density matrices.\n" " Please set SCF_TYPE to %s" % (name, supp_string)) def check_disk_df(name, optstash): optstash.add_option(['SCF_TYPE']) # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE') or core.get_global_option('SCF_TYPE') == "DF": core.set_global_option('SCF_TYPE', 'DISK_DF') core.print_out(f""" For method '{name}', SCF Algorithm Type (re)set to DISK_DF.\n""") else: if core.get_global_option('SCF_TYPE') == "MEM_DF": raise ValidationError( f" Method '{name}' requires SCF_TYPE = DISK_DF, please use SCF_TYPE = DF to automatically choose the correct DFJK implementation." ) def print_ci_results(ciwfn, rname, scf_e, ci_e, print_opdm_no=False): """ Printing for all CI Wavefunctions """ # Print out energetics core.print_out("\n ==> Energetics <==\n\n") core.print_out(" SCF energy = %20.15f\n" % scf_e) if "CI" in rname: core.print_out(" Total CI energy = %20.15f\n" % ci_e) elif "MP" in rname: core.print_out(" Total MP energy = %20.15f\n" % ci_e) elif "ZAPT" in rname: core.print_out(" Total ZAPT energy = %20.15f\n" % ci_e) else: core.print_out(" Total MCSCF energy = %20.15f\n" % ci_e) # Nothing to be done for ZAPT or MP if ("MP" in rname) or ("ZAPT" in rname): core.print_out("\n") return # Initial info ci_nroots = core.get_option("DETCI", "NUM_ROOTS") irrep_labels = ciwfn.molecule().irrep_labels() # Grab the D-vector dvec = ciwfn.D_vector() dvec.init_io_files(True) for root in range(ci_nroots): core.print_out("\n ==> %s root %d information <==\n\n" % (rname, root)) # Print total energy root_e = ciwfn.variable("CI ROOT %d TOTAL ENERGY" % (root)) core.print_out(" %s Root %d energy = %20.15f\n" % (rname, root, root_e)) # Print natural occupations if print_opdm_no: core.print_out("\n Active Space Natural occupation numbers:\n\n") occs_list = [] r_opdm = ciwfn.get_opdm(root, root, "SUM", False) for h in range(len(r_opdm.nph)): if 0 in r_opdm.nph[h].shape: continue nocc, rot = np.linalg.eigh(r_opdm.nph[h]) for e in nocc: occs_list.append((e, irrep_labels[h])) occs_list.sort(key=lambda x: -x[0]) cnt = 0 for value, label in occs_list: value, label = occs_list[cnt] core.print_out(" %4s % 8.6f" % (label, value)) cnt += 1 if (cnt % 3) == 0: core.print_out("\n") if (cnt % 3): core.print_out("\n") # Print CIVector information ciwfn.print_vector(dvec, root) # True to keep the file dvec.close_io_files(True) def prepare_sapt_molecule(sapt_dimer: core.Molecule, sapt_basis: str) -> Tuple[core.Molecule, core.Molecule, core.Molecule]: """ Prepares a dimer molecule for a SAPT computations. Returns the dimer, monomerA, and monomerB. """ # Shifting to C1 so we need to copy the active molecule sapt_dimer = sapt_dimer.clone() if sapt_dimer.schoenflies_symbol() != 'c1': core.print_out(' SAPT does not make use of molecular symmetry, further calculations in C1 point group.\n') sapt_dimer.reset_point_group('c1') sapt_dimer.fix_orientation(True) sapt_dimer.fix_com(True) sapt_dimer.update_geometry() else: sapt_dimer.update_geometry() # make sure since mol from wfn, kwarg, or P::e sapt_dimer.fix_orientation(True) sapt_dimer.fix_com(True) nfrag = sapt_dimer.nfragments() if nfrag == 3: # Midbond case if sapt_basis == 'monomer': raise ValidationError("SAPT basis cannot both be monomer centered and have midbond functions.") midbond = sapt_dimer.extract_subsets(3) ztotal = 0 for n in range(midbond.natom()): ztotal += midbond.Z(n) if ztotal > 0: raise ValidationError("SAPT third monomer must be a midbond function (all ghosts).") ghosts = ([2, 3], [1, 3]) elif nfrag == 2: # Classical dimer case ghosts = (2, 1) else: raise ValidationError('SAPT requires active molecule to have 2 fragments, not %s.' % (nfrag)) if sapt_basis == 'dimer': monomerA = sapt_dimer.extract_subsets(1, ghosts[0]) monomerA.set_name('monomerA') monomerB = sapt_dimer.extract_subsets(2, ghosts[1]) monomerB.set_name('monomerB') elif sapt_basis == 'monomer': monomerA = sapt_dimer.extract_subsets(1) monomerA.set_name('monomerA') monomerB = sapt_dimer.extract_subsets(2) monomerB.set_name('monomerB') else: raise ValidationError("SAPT basis %s not recognized" % sapt_basis) return (sapt_dimer, monomerA, monomerB) def sapt_empirical_dispersion(name, dimer_wfn, **kwargs): sapt_dimer = dimer_wfn.molecule() sapt_dimer, monomerA, monomerB = prepare_sapt_molecule(sapt_dimer, "dimer") disp_name = name.split("-")[1] # Get the names right between SAPT0 and FISAPT0 saptd_name = name.split('-')[0].upper() if saptd_name == "SAPT0": sapt0_name = "SAPT0" else: sapt0_name = "SAPT" save_pair = (saptd_name == "FISAPT0") from .proc import build_disp_functor _, _disp_functor = build_disp_functor('hf-' + disp_name, restricted=True, save_pairwise_disp=save_pair, **kwargs) ## Dimer dispersion dimer_disp_energy = _disp_functor.compute_energy(dimer_wfn.molecule(), dimer_wfn) ## Monomer dispersion mon_disp_energy = _disp_functor.compute_energy(monomerA) mon_disp_energy += _disp_functor.compute_energy(monomerB) disp_interaction_energy = dimer_disp_energy - mon_disp_energy core.set_variable(saptd_name + "-D DISP ENERGY", disp_interaction_energy) core.set_variable("SAPT DISP ENERGY", disp_interaction_energy) core.set_variable("DISPERSION CORRECTION ENERGY", disp_interaction_energy) core.set_variable(saptd_name + "DISPERSION CORRECTION ENERGY", disp_interaction_energy) ## Set SAPT0-D3 variables total = disp_interaction_energy saptd_en = {} saptd_en['DISP'] = disp_interaction_energy for term in ['ELST', 'EXCH', 'IND']: en = core.variable(' '.join([sapt0_name, term, 'ENERGY'])) saptd_en[term] = en core.set_variable(' '.join([saptd_name + '-D', term, 'ENERGY']), en) core.set_variable(' '.join(['SAPT', term, 'ENERGY']), en) total += en core.set_variable(saptd_name + '-D TOTAL ENERGY', total) core.set_variable('SAPT TOTAL ENERGY', total) core.set_variable('CURRENT ENERGY', total) ## Print Energy Summary units = (1000.0, constants.hartree2kcalmol, constants.hartree2kJmol) core.print_out(f" => {saptd_name +'-D'} Energy Summary <=\n") core.print_out(" " + "-" * 104 + "\n") core.print_out( " %-25s % 16.8f [mEh] % 16.8f [kcal/mol] % 16.8f [kJ/mol]\n" % ("Electrostatics", saptd_en['ELST'] * units[0], saptd_en['ELST'] * units[1], saptd_en['ELST'] * units[2])) core.print_out(" %-25s % 16.8f [mEh] % 16.8f [kcal/mol] % 16.8f [kJ/mol]\n" % ("Exchange", saptd_en['EXCH'] * units[0], saptd_en['EXCH'] * units[1], saptd_en['EXCH'] * units[2])) core.print_out(" %-25s % 16.8f [mEh] % 16.8f [kcal/mol] % 16.8f [kJ/mol]\n" % ("Induction", saptd_en['IND'] * units[0], saptd_en['IND'] * units[1], saptd_en['IND'] * units[2])) core.print_out( " %-25s % 16.8f [mEh] % 16.8f [kcal/mol] % 16.8f [kJ/mol]\n" % ("Dispersion", saptd_en['DISP'] * units[0], saptd_en['DISP'] * units[1], saptd_en['DISP'] * units[2])) core.print_out(" %-27s % 16.8f [mEh] % 16.8f [kcal/mol] % 16.8f [kJ/mol]\n" % ("Total " + saptd_name + "-D", total * units[0], total * units[1], total * units[2])) core.print_out(" " + "-" * 104 + "\n") if saptd_name == "FISAPT0": pw_disp = dimer_wfn.variable("PAIRWISE DISPERSION CORRECTION ANALYSIS") pw_disp.name = 'Empirical_Disp' filepath = core.get_option("FISAPT", "FISAPT_FSAPT_FILEPATH") fisapt_proc._drop(pw_disp, filepath) return dimer_wfn