Bibliography¶
J. F. Gonthier and C.D. Sherrill, J. Chem. Phys. 145, 134106 (2016).
R. M. Parrish, J. F. Gonthier, C. Corminboeuf, and C.D. Sherrill, J. Chem. Phys. 143, 051103 (2015).
R. M. Parrish and C.D. Sherrill, J. Am. Chem. Soc. 136, 17386 (2014).
R. M. Parrish, T. M. Parker, and C.D. Sherrill, J. Chem. Theory Comput. 10, 4417 (2014).
R. M. Parrish and C.D. Sherrill, J. Chem. Phys. 141, 044115 (2014).
B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev. 94, 1887 (1994).
T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014).
E. G. Hohenstein and C. D. Sherrill, WIREs Comput. Mol. Sci. 2, 304-326 (2012).
E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys. 132, 184111 (2010).
E. G. Hohenstein, R. M. Parrish, C. D. Sherrill, J. M. Turney, and H. F. Schaefer III, J. Chem. Phys. 135, 174107 (2011).
E. G. Hohenstein, H. M. Jaeger, E. J. Carrell, G. S. Tschumper, and C. D. Sherrill, J. Chem. Theory Comput. 7, 2842-2851 (2011).
R. M. Parrish and C. D. Sherrill, J. Chem. Phys. 139, 174102 (2013).
E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys. 133, 014101 (2010).
E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys. 133, 104107 (2010).
A. J. Stone and A. J. Misquitta, Chem. Phys. Lett. 473, 201 (2009).
E. Papajak and D. G. Truhlar, J. Chem. Theory Comput. 7, 10-18 (2011).
E. Bolton, Y. Wang, P. A. Thiessen, S. H. Bryant. PubChem: Integrated Platform of Small Molecules and Biological Activities, Chapter 12 in Annual Reports in Computational Chemistry, Volume 4 (American Chemical Society: Washington, DC, 2008). See https://pubchem.ncbi.nlm.nih.gov/.
C. D. Sherrill and H. F. Schaefer III, Advances in Quantum Chemistry, Vol. 34, edited by P.-O. Löwdin (Academic Press, New York, 1999), pages 143-269.
S. Hirata and R. J. Bartlett, Chem. Phys. Lett. 321, 216 (2000).
J. Olsen, J. Chem. Phys. 113, 7140 (2000).
Peng, Ayala, Schlegel, and Frisch, J. Comput. Chem. 17, 49 (1996).
Bakken and Helgaker, J. Chem. Phys. 117, 9160 (2002).
Schlegel, Theor. Chim. Acta 66, 333 (1984).
Fischer and Almlof, J. Phys. Chem. 96, 9770 (1992).
Schlegel, Ab Initio Methods in Quantum Chemistry, (1987).
Bofill, J. Comp. Chem. 15, 1-11 (1994).
P. Piecuch, S. A. Kicharski, and R. J. Bartlett, J. Chem. Phys. 110, 6103 (1999).
N. C. Handy, Chem. Phys. Lett. 74, 280 (1980).
J. Olsen, B. O. Roos, P. Jørgensen, and H. J. Aa. Jensen, J. Chem. Phys. 89 2185 (1988).
J. Schirmer, Phys. Rev. A 26, 2395 (1982).
A. B. Trofimov, I. L, Krivdina, J. Weller, and J. Schirmer, Chem. Phys. 329, 1 (2006).
C. Häaettig and K. Hald, Phys. Chem. Chem. Phys. 4, 2111 (2002).
F. A. Evangelista, A. C. Simmonett, H. F. Schaefer III, D. Mukherjee, and W. D. Allen, Phys. Chem. Chem. Phys. 11, 4728 (2009).
F. A. Evangelista, W. D. Allen, and H. F. Schaefer III, J. Chem. Phys. 125, 154113 (2006).
F. A. Evangelista, A. C. Simmonett, W. D. Allen, H. F. Schaefer III, and J. Gauss, J. Chem. Phys. 128, 124104 (2008).
L. Cheng and J. Gauss, J. Chem. Phys. 135, 084114 (2011).
P. Verma, W. D. Derricotte, F. A. Evangelista, J. Chem. Theory Comput. (2015). https://doi.org/10.1021/acs.jctc.5b00817
B. Jeziorski and H. J. Monkhorst, Phys. Rev. A 24, 1668 (1981).
K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479-483 (1989).
G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910-1918 (1982).
C. Sosa, J. Geersten, G. W. Trucks, R. J. Barlett, and J. A. Franz, Chem. Phys. Lett. 159, 148–154 (1989).
B. O. Roos, Chem. Phys. 48, 157-173 (1980).
G. Chaban, M. W. Schmidt, and M. S. Gordon, Theor. Chem. Acc. 97, 88-95 (1997).
P. Pulay, Chem. Phys. Lett. 73, 393-398 (1980).
P.-A. Malmqvist, A. Rendell, and B. O. Roos, J. Phys. Chem. 94, 5477-5482 (1990).
F. A. Evangelista, E. Prochnow, J. Gauss, and H. F. Schaefer III, J. Chem. Phys. 132, 074107 (2010).
F. Wennmohs and F. Neese, Chem. Phys. 343, 217-230 (2008).
A. E. DePrince III and C. D. Sherrill, J. Chem. Theory Comput. 9, 293-299 (2013).
A. E. DePrince III and C. D. Sherrill, J. Chem. Theory Comput. 9, 2687-2696 (2013).
L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221-7230 (1991).
J. A. Pople, M. Head-Gordon, and K. J. Raghavachari, Chem. Phys. 87, 5968 (1987).
T. D. Crawford, J. F. Stanton, W. D. Allen, and H. F. Schaefer III, J. Chem. Phys., 107, 10626 (1997).
C. D. Sherrill, A. I. Krylov, E. F. C. Byrd, and M. Head-Gordon, J. Chem. Phys. 109, 4171 (1998).
A. I. Krylov, C. D. Sherrill, and M. Head-Gordon, J. Chem. Phys. 113, 6509 (2000).
W. Kurlancheek and M. Head-Gordon, Mol. Phys. 107, 1223 (2009).
T. B. Pedersen, H. Koch, and C. Hattig, J. Chem. Phys. 110, 8318 (1999).
U. Bozkaya, J. M. Turney, Y. Yamaguchi, H. F. Schaefer III, and C. D. Sherrill J. Chem. Phys. 135, 104103 (2011).
U. Bozkaya and C. D. Sherrill J. Chem. Phys. 138, 184103 (2013).
U. Bozkaya, J. Chem. Phys. 135, 224103 (2011).
E. Soydas and U. Bozkaya, J. Chem. Theory Comput. 9, 1452 (2013).
U. Bozkaya and H. F. Schaefer III, J. Chem. Phys. 136, 204114 (2012).
U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 139, 054104 (2013).
U. Bozkaya, J. Chem. Phys. 139, 104116 (2013).
Grimme, J. Comp. Chem. 25 1463-1473 (2004).
Grimme, J. Comp. Chem. 27, 1787-1799 (2006).
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
Q. Wu and W. Yang, J. Chem. Phys. 116, 515 (2002).
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864-B871 (1964).
W. Kohn and L.J. Sham, Phys. Rev. 140, A1133-A1138 (1965).
R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules Oxford University Press, USA, 1989 ISBN:0195357736, 9780195357738
L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29-36 (1950)
W. Kutzelnigg, Int. J. Quantum Chem. 25, 107-129 (1984)
D. Smith, L. Burns, K. Patkowski, and D. Sherrill, J. Phys. Chem. Lett. 7, 2197-2203 (2016).
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory 1982 ISBN:0486691861
S. Grimme, J. Brandenburg, C. Bannwarth, and A. Hansen, J. Chem. Phys. 143, 054107 (2015).
R. Sure and S. Grimme, J. Comput. Chem. 15, 1672 (2013).
M. Kallay and J. Gauss, J. Chem. Phys. 129, 144101 (2008).
J. M. L. Martin, Mol. Phys. 112, 785 (2014).
R. Cammi, J. Chem. Phys. 131, 164104 (2009).
A. Klamt, and G. Schüürmann J. Chem. Soc., Perkin Trans. 2 5, 799 (1993).
J. Tomasi, B. Mennucci, and R. Cammi Chem. Rev. 105, 2999 (2005).
E. Cancès, B. Mennucci J. Math. Chem. 23, 309 (1998).
E. Cancès, Y. Maday, B. Stamm J. Chem. Phys. 139, 054111 (2013).
B. Stamm, E. Cancès, F. Lipparini, Y. Maday J. Chem. Phys. 144, 054101 (2016).
F. Lipparini, G. Scalmani, L. Lagardère, B. Stamm, E. Cancès, Y. Maday, J.-P. Piquemal, M. Frisch, B. Mennucci J. Chem. Phys. 141, 184108 (2014).
M. Nottoli, B. Stamm, G. Scalmani, F. Lipparini J. Chem. Theory Comput. 15, 6061 (2019).
B. Z. Lu, Y. C. Zhou, M. J. Holst, J. A. McCammon Commun. Comput. Phys. 3, 973 (2008).
A. Jha, M. Nottoli, A. Mikhalev, C. Quan, B. Stamm J. Chem. Phys. 158, 104105 (2023).
A. Bondi J. Phys. Chem. 68, 441 (1964).
A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff J. Am. Chem. Soc., 25, 114 (1992).
R. T. McGibbon, A. G. Taube, A. G. Donchev, K. Siva, F. Hernáandez, C. Hargus, K. H. Law, J. L. Klepeis, D. E. Shaw J. Chem. Phys. 147, 161725 (2017).
Konrad Patkowski, Piotr S. .Zuchowski, Daniel G. A. Smith J. Chem. Phys. 148, 164110 (2018).
Christophe Morell, André Grand, and Alejandro Toro-Labbé J. Phys. Chem. A 109, 205 (2005).
Jorge Ignacio Martínez-Araya J. Math. Chem. 53, 451 (2015).
W. Hujo and S. Grimme J. Chem. Theory Comput. 7 3866 (2011).
J. Chai and M. Head-Gordon Phys. Chem. Chem. Phys. 10 6615 (2008).
K. Pernal, R. Podeszwa, K. Patkowski, K. Szalewicz Phys. Rev. Lett. 103 263201 (2009).
R. Podeszwa, K. Pernal, K. Patkowski, K. Szalewicz J. Phys. Chem. Lett. 1 550 (2010).
R. Schäffer and G. Jansen Theor. Chem. Acc. 131, 1235 (2012).
R. Schäffer and G. Jansen Mol. Phys. 111, 2570 (2013), https://doi.org/10.1080/00268976.2013.827253 .
H. Laqua, J. Kussmann and C. Ochsenfeld J. Chem. Phys. 149, 204111 (2018)
S. Lehtola J. Chem. Theory Comput. 15, 1593 (2019), https://doi.org/10.1021/acs.jctc.8b01089.
J. H. Ammeter, H.-B. Bürgi, J. C. Thibeault, and R. Hoffmann J. Am. Chem. Soc. 100, 3686 (1978), https://doi.org/10.1021/ja00480a005
S. Lehtola J. Chem. Phys. 151, 241102 (2019), https://doi.org/10.1063/1.5139948.
S. Lehtola Int. J. Quantum Chem. 119, e25945 (2019), https://doi.org/10.1002/qua.25945.
S. Lehtola Phys. Rev. A. 101, 012516 (2020), https://doi.org/10.1103/PhysRevA.101.012516.
S. Lehtola Phys. Rev. A. 101, 032504 (2020), https://doi.org/10.1103/PhysRevA.101.032504.
S. Lehtola J. Chem. Phys. 152, 134108 (2020), https://doi.org/10.1063/1.5144964.
S. Lehtola, L. Visscher, and E. Engel J. Chem. Phys. 152, 144105 (2020), https://doi.org/10.1063/5.0004046.
J. M. Olsen, K. Aidas, and J. Kongsted. J. Chem. Theory Comput. 6, 3721-3734 (2010).
A. Dreuw and M. Wormit. WIREs Comput. Mol. Sci. 5, 82-95 (2014).
M. F. Herbst, M. Scheurer, T. Fransson, D. R. Rehn, and A. Dreuw. WIREs Comput. Mol. Sci., (2020) DOI: 10.1002/wcms.1462, Preprint https://adc-connect.org/q/publications
S. E. Houck and N. J. Mayhall, J. Chem. Theory Comput. 15, 2278-2290 (2019).
A. I. Krylov, Chem. Phys. Lett. 350, 522-530 (2001).
M. Nooijen and R. J. Bartlett, J. Chem. Phys. 102, 3629 (1995).
L.-P. Wang and C. Song, J. Chem. Phys. 144, 214108 (2016).
R. Eric Stratmann, G. E. Scuseria, and M. J. Frisch J. Chem. Phys. 109, 8218 (1998), https://doi.org/10.1063/1.477483.
T. B. Pedersen, A. E. Hansen Chem. Phys. Lett. 246, 1 (1995), https://doi.org/10.1016/0009-2614(95)01036-9.
P. J. Lestrange, F. Egidi, X. Li J. Chem. Phys. 143, 234103 (2015), https://doi.org/10.1063/1.4937410.
Rizzo, S. Coriani, K. Ruud, “Response Function Theory Computational Approaches to Linear and Nonlinear Optical Spectroscopy”. In Computational Strategies for Spectroscopy, https://doi.org/10.1002/9781118008720.ch2.
A. Dreuw, M. Head-Gordon Chem. Rev. 105, 4009 (2005), https://doi.org/10.1021/cr0505627.
Norman, K. Ruud, T. Saue, “Principles and Practices of Molecular Properties: Theory, Modeling, and Simulations”. John Wiley & Sons, 2018
Verstraelen et al. “Minimal Basis Iterative Stockholder: Atoms in Molecules for Force-Field Development”. J. Chem. Theory and Comput. https://doi.org/10.1021/acs.jctc.6b00456.
A. Hesselmann and T. Korona, J. Chem. Phys. 141, 094107 (2014).
R. Podeszwa, R. Bukowski, and K. Szalewicz, J. Chem. Theory Comput. 2, 400 (2006).
Y. Xie, D. G. A. Smith, and C. D. Sherrill, J. Chem. Phys., 157, 024801 (2022)
E. Hylleraas Z. Phys. 65, 209 (1930).
P. Pulay and S. Saebø, Theor. Chim. Acta 69, 357 (1986).
P. Pinski, C. Riplinger, E. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015).
D. Liakos, M. Sparta, M. Kesharwani, J. Martin, and F. Neese, J. Chem. Theory Comput. 11, 1525 (2015).
F. Neese, F. Wennmohs, and A. Hansen Chem. Phys. 356, 98-109 (2009)
R. Izsák and F. Neese J. Chem. Phys. 135, 144105 (2011)
10.1021/acs.jctc.8b00286, “PSI4NUMPY: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development”, D. G. A. Smith, L. A. Burns, D. A. Sirianni, D. R. Nascimento, A. Kumar, A. M. James, J. B. Schriber, T. Zhang, B. Zhang, A. S. Abbott, E. J. Berquist, M. H. Lechner, L. A. Cunha, A. G. Heide, J. M. Waldrop, T. Y. Takeshita, A. Alenaizan, D. Neuhauser, R. A. King, A. C. Simmonett, J. M. Turney, H. F. Schaefer III, F. A. Evangelista, A. E. DePrince, T. D. Crawford, K. Patkowski, and C. D. Sherrill J. Chem. Theory Comput. 14, 3504-3511 (2018).
J. B. Schriber, D. A. Sirianni, D. G. A. Smith, L. A. Burns, D. Sitkoff, D. L. Cheney, C. D. Sherrill J. Chem. Phys. 154, 234107 (2021).
“A generally applicable atomic-charge dependent London dispersion correction”, E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and S. Grimme, J. Chem. Phys. 150, 154122 (2019). https://doi.org/10.1063/1.5090222
M. Haser and R. Ahlrichs, J. Comp. Chem. 10(1), 104 (1989). https://doi.org/10.1002/jcc.540100111
T. H. Thompson and C. Ochsenfeld J. Chem. Phys. 147, 144101 (2017). https://doi.org/10.1063/1.4994190
“PSI4 1.4: Open-source software for high-throughput quantum chemistry”, D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer III, A. Yu. Sokolov, K. Patkowski, A. E. DePrince III, U. Bozkaya, R. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill J. Chem. Phys. 152, 184108 (2020). https://doi.org/10.1063/5.0006002
“Nonapproximated third-order exchange induction energy in symmetry-adapted perturbation theory”, J. M. Waldrop and K. Patkowski J. Chem. Phys. 154, 024103 (2021). https://doi.org/10.1063/1.4994190
C. Ochsenfeld, C. A. White, M. Head-Gordon J. Chem. Phys. 109, 1663 (1998) https://doi.org/10.1063/1.476741
“REMP: A hybrid perturbation theory providing improved electronic wavefunctions and properties”, S. Behnle and R. F. Fink, J. Chem. Phys. 150, 1241077 (2019). https://doi.org/10.1063/1.5086168
“OO-REMP: Approaching Chemical Accuracy with Second-Order Perturbation Theory”, S. Behnle and R. F. Fink, J. Chem. Theory Comput. 17, 3259 (2021). https://doi.org/10.1021/acs.jctc.1c00280
“UREMP, RO-REMP, and OO-REMP: Hybrid perturbation theories for open-shell electronic structure calculations”, S. Behnle and R. F. Fink J. Chem. Phys. 156, 124103 (2022). https://doi.org/10.1063/5.0081285
“Two new unitary-invariant and size-consistent perturbation theoretical approaches to the electron correlation energy”, R. F. Fink Chem. Phys. Lett., 428, 461 (2006) https://doi.org/10.1016/j.cplett.2006.07.081
U. Bozkaya, J. Chem. Theory Comput. 10, 4389-4399 (2014). https://doi.org/10.1021/ct500634s
U. Bozkaya, J. Chem. Theory Comput. 12, 1179-1188 (2016). https://doi.org/10.1021/acs.jctc.5b01128
U. Bozkaya, Phys. Chem. Chem. Phys. 18, 11362-11373 (2016). https://doi.org/10.1039/c6cp00164e
U. Bozkaya, J. Chem. Phys. 144, 144108 (2016). https://doi.org/10.1063/1.4945706
U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 144, 174103 (2016). https://doi.org/10.1063/1.4948318
U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 147, 044104 (2017). https://doi.org/10.1063/1.4994918
U. Bozkaya, J. Comput. Chem. 39, 351-360 (2018). https://doi.org/10.1002/jcc.25122
U. Bozkaya, J. Chem. Phys. 153, 244115 (2020). https://doi.org/10.1063/5.0035811
D. Luu and K. Patkowski, J. Phys. Chem. A 127, 356-377 (2023). https://doi.org/10.1021/acs.jpca.2c06465
F. Weigend, Phys. Chem. Chem. Phys. 4, 4285-4291 (2002). https://doi.org/10.1039/B204199P
J. G. Brandenburg, C.Bannwarth, A. Hansen, S. Grimme, J. Chem. Phys. 148, 064104, (2018). https://doi.org/10.1063/1.5012601
M. Müller and A. Hansen and S. Grimme J. Chem. Phys. 158, 014103 (2023). https://doi.org/10.1063/5.0133026
S. Grimme and A. Hansen and S. Ehlert and J.-M. Mewes J. Chem. Phys. 154, 064103 (2021). https://doi.org/10.1063/5.0040021